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Abstract

We report on recent results about the dimension and smoothness prop-

erties of self-similar sets and measures. Closely related to these are results

on the linear projections of such sets, and dually, their intersections with

a�ne subspaces. We also discuss recent progress on the the Bernoulli

convolutions problem.

1 Introduction

Consider a random walk (Xn)∞n=0 on Rd, started from a point, and with the
transitions given by Xn+1 = ξnXn, where (ξn) is an independent sequence of
similarity maps, chosen according to a �xed distribution p.

The long term behavior of (Xn) depends on the scaling properties of the ξn.
If they are expanding, there is no interesting limit. But the other cases are quite
interesting. When the ξn are isometries, and act in some sense irreducibly on Rd,
both a central limit theorem and local limit theorem hold, i.e. (Xn−EXn)/nd/2

converges in law to a Gaussian, and Xn − EXn converges to Lebesgue measure
on bounded open sets [52, 19, 43, 53]. Thus, the limiting behavior is universal,
and Xn spreads out �as much as possible�.

The remaining case, namely, when the ξn contract, is our focus here. Then
Xn converges in law (without any normalization) to a measure µ, which does
not depend on the starting point X0, but very strongly depends on the step
distribution p. An important case is when p is �nitely supported. The stationary
measure µ is called a self-similar measure, and its topological support, which
is the set of accumulation points of any orbit of the semigroup generated by
supp p, is called a self-similar set.

Many mathematical problems surround self-similar sets and measures, and
in this paper we survey some of the recent progress on them. Perhaps the most
natural problem is to determine the dimension, and, if applicable, smoothness, of
µ. Although there is no universal limiting distribution as in the CLT, a weaker
universal principle is believed to apply: namely, that µ should be �as spread
out as possible� given the constraints imposed by the amount of contraction
in the system, and given possible algebraic constraints, such as being trapped
in a lower-dimensional subspace. This principle � that in algebraic settings,
dynamical processes tend to spread out as much as the algebraic constraints
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allow � has many counterparts, such as rigidity theorems for horocycle �ows
and higher rank diagonal actions on homogeneous spaces (for references see e.g.
[28]), and sti�ness of random walks on homogeneous spaces (e.g. [5, 2]).

Self-similar sets and measures are also natural examples of �fractal� sets;
they possesses a rich set of symmetries, and a natural hierarchical structure.
This has motivated a number of longstanding conjectures about the geometry
of such sets and measures, and speci�cally, about the dimension of their linear
images and their intersections with a�ne subspaces. Many of these conjectures
are now con�rmed, as we shall describe below.

Finally, we devote some time to the special case of Bernoulli convolutions,
which is a problem with strong number-theoretic connections. This problem
also has seen dramatic progress in the past few years.

Due to space constraints, we have omitted many topics, and kept to a mini-
mum the discussion of classical results, except where directly relevant. A more
complete picture can be found in the references.

The plan of the paper is as follows. We discuss the dimension problem for
self-similar sets and measures in Section 2;. The Bernoulli convolutions problem
in Section 3; and projections and slices in Section 4.

2 Self-similar sets and measures

Self-similar sets and measures are the prototypical fractals; the simplest example
is the middle-1/3 Cantor set and the Cantor-Lebesgue measure, which arise from
the system of contractions ϕ0(x) = 1

3x and ϕ1(x) = 1
3x + 2

3 , taken with equal
probabilities. In general, self-similar sets and measures decompose into copies of
themselves, just as the Cantor set does. This is most evident using Hutchinson's
construction [24], which we specialize to our setting.

An iterated function system will mean a �nite family Φ = {ϕi}i∈Λ of
contracting similarity maps of Rd. A self similar set is the attractor of Φ,
that is, the unique non-empty compact set X = XΦ satisfying

X =
⋃
i∈Λ

ϕi(X) (1)

The self-similar measure determined by Φ = {ϕi}i∈Λ and a probability vector
p = (pi)i∈Λ (which we think of as a measure on Φ) is the unique Borel probability
measure µ = µΦ,p satisfying

µ =
∑
i∈Λ

pi · ϕiµ (2)

where ϕµ = µ ◦ ϕ−1 is the push-forward measure. When p is strictly positive,
the topological support suppµ of µ is X.

A similarity has the form ϕ(x) = rUx + b where r > 0, U is an orthogonal
matrix, and b ∈ Rd. We call r the contraction, U the orthogonal part,
and b the translation part of ϕ , respectively. We say that Φ, X or µ are
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self-homothetic if the ϕi are homotheties, i.e. they have trivial rotations;
uniformly contracting if ϕi all have the same contraction ratio; and have
uniform rotations if the ϕi all have the same orthogonal parts. Also, Φ is
algebraic if all coe�cients de�ning ϕi are algebraic.

By de�nition, X and µ decompose into smaller copies of themselves, and by
iterating the identities (1) and (2) one gets a decomposition at arbitrarily small
scales. For a sequence i = i1 . . . in ∈ Λn it is convenient to denote ϕi = ϕi1 ◦ . . .◦
ϕin . Note that the contraction tends to 0 exponentially as n→∞. For i ∈ Λn,
we call ϕiX and ϕiµ generation-n cylinders. These are the small-scale copies
alluded to above, with the corresponding decompositions X =

⋃
i∈Λn ϕiX and

µ =
∑

i∈Λn pi · ϕiµ. The last identity shows that the de�nition above coincides
with the earlier description using random walks: For i ∈ Λn, the diameter
of the support of ϕiµ converges uniformly to zero as n → ∞, so the identity
µ =

∑
i∈Λn pi · ϕiµ implies that µ is the limit distribution of

∑
i∈Λn pi · δϕix for

every x ∈ suppµd. The last measure is just the distribution of the random walk
from the introduction, started from x.

2.1 Preliminaries on dimension

We denote by dim(·) the Hausdor� dimension for sets, and the lower Hausdor�
dimension of Borel probability measures, de�ned by

dimµ = inf{dimE : µ(E) > 0}

Hs denotes s-dimensional Hausdor� measure. Absolute continuity (a.c.) is with
respect to Lebesgue measure.

There are many other notions of dimension which in general disagree, but
for self-similar sets and measures most of them coincide. Speci�cally, Falconer
proved that self-similar sets have equal Hausdor� and box dimensions [10]. For
self-similar measures, Feng and Hu [12] proved that a self-similar measure is
exact dimensional, meaning that for α = dimµ, as r → 0 we have

µ(Br(x)) = rα(1+o(1)) for µ-a.e. x (3)

(non-uniformly in x).
With regard to smoothness of self-similar measures, in the special case of

in�nite convolutions it is a classical result of Jessen and Wintner [25] that the
measure is of pure type, i.e. is either singular with respect to Lebesgue, or
absolutely continuous with respect to it. This is true for all self-similar measures,
and is a consequence of Kolmogorov's zero-one law.

2.2 Similarity and Lyapunov dimension

In order to estimate the dimension of a set or measure, one must construct
e�cient covers of it, or estimate the mass of sets of small diameter. Self-similar
sets and measures come equipped with the natural covers given by the cylinder
sets of a given generation, or of a given approximate diameter. Counting cylinder
sets, one arrives at the following estimates for the dimension:
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• The similarity dimension is the unique s = s(Φ) ≥ 0 satisfying
∑
rsi =

1, where ri is the contraction constant of ϕi.

• The Lyapunov dimension of Φ and a probability vector p = (pi)i∈Λ is
s(Φ, p) = H(p)/λ(p), where H(p) = −

∑
pi log pi is the Shannon entropy

of p, and λ(p) = −
∑
pi log ri is the asymptotic contraction, i.e. Lyapunov

exponent, of the associate random product.

Note that s(Φ, p) is maximal when p = (rsi )i∈Λ (with s = s(Φ)), and then the
similarity and Lyapunov dimensions coincide: s(Φ, p) = s(Φ).

These estimates ignore the possibility of coincidences between cylinders.
When cylinders of the same generation intersect we say that the system has
overlaps; it has exact overlaps if there exist �nite sequences i, j ∈ Λ∗ such
that ϕi = ϕj, or in other words, if the semigroup generated by Φ is not freely
generated by it. If this happens, then without loss of generality we can assume
that i, j have the same length n (otherwise replace them with ij and ji), and if
such pairs exist for some n, then they exist for all large enough n.

In this generality, Hutchinson [24] was the �rst to show that dimX ≤ s(Φ)
and dimµ ≤ s(Φ, p). Furthermore, these are equalities if we assume that there
are only mild overlaps. Speci�cally, Φ is said to satisfy the open set condition

(OSC) if there exists an open non-empty set U such that ϕiU ⊆ U for all
i ∈ Λ and ϕiU ∩ ϕjU = ∅ for all i 6= j. A special case of this is when the
�rst generation cylinders are disjoint, which is called the strong separation

condition (SSC). The OSC allows overlaps, but it implies that the overlaps
have bounded multiplicity.

Theorem 2.1 (Hutchinson [24]). Suppose Φ = {ϕi}i∈Λ is an IFS in Rd sat-
isfying the OSC. Then dimXΦ = s(Φ) and dimµΦ,p = s(Φ, p) for every p.
Furthermore, writing s = s(Φ), we have 0 < Hs(X) < ∞, and Hs|XΦ is equiv-
alent to the self-similar measure de�ned by p = (rsi )i∈Λ.

In fact, for s = s(Φ), Falconer showed that Hs(X) < ∞ always holds [10].
In general Hs can vanish on X; Schief [44] (following some special cases [27, 1])
showed that Hs(X) > 0 for s = s(Φ) is exactly equivalent to the OSC.

It must be emphasized that the OSC allows only �minor� overlaps between
cylinders, and since dimX ≤ d for X ⊆ Rd, by Theorem 2.1, the OSC implies
s(Φ) ≤ d. There exist IFSs with s(Φ) > d, e.g. one can take an IFS Φn =
{ϕi}ni=1 on R with ϕi(x) = 1

2x + i. The attractor is an interval, but s(Φn) =
log n/ log 2. In any case, the dimension d of the ambient space Rd is also an
upper bound on dimension, so whether or not the OSC holds, we have

dimX ≤ min{d, s(Φ)} (4)

dimµ ≤ min{d, sp(Φ)} (5)

We say thatX or µ exhibits dimension drop if the corresponding inequality
above is strict. The principle way dimension drop occurs is if there are exact
overlaps. Indeed, suppose dimX < d and i, j ∈ Λn with ϕi = ϕj. Let Φn =
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{ϕ : u ∈ Λn}. Then a short calculation shows that s(Φn) < s(Φ). Since X is
also the attractor of Φn, we get dimX ≤ min{d, s(Φn)} < min{d, s(Φ)}, and
we have dimension drop.

2.3 The overlaps conjecture, and what we know about it

In this section we specialize to R, where exact overlaps are the only known
mechanism that leads to dimension drop. The next conjecture is partly folklore.
It seems to have �rst appeared in general form in [49].

Conjecture 2.2. In R, dimension drop occurs only in the presence of exact
overlaps.

Thus, non-exact overlaps should not lead to dimension drop. By Theorem
2.1, we know that minor overlaps can indeed be tolerated. Other examples
come from parametric families such as the {0, 1, 3}-problem, which concerns
the attractor of the IFS Φλ = {x 7→ λx , x 7→ λx + 1 , x 7→ λx + 3}. There
are only countably many parameters λwith exact overlaps, and Pollicott and
Simon showed that for a.e. λ ∈ [ 1

3 ,
1
2 ], there is no dimension drop, see also [26].

To go further we must quantify the amount of overlap. De�ne the distance
d(·, ·) between similarities ϕ(x) = ax+ b and ϕ′(x) = a′x+ b′ by

d(ϕ,ϕ′) = |b− b′|+ | log a− log a′| (6)

Alternatively, one can take any left- or right-invariant Riemannian metric on
the group of similarities, or the operator norm on the standard embedding of
the group into GL2(R). These metrics are not equivalent, but are mutually
bounded up a power distortion, which makes them equivalent for the purpose
of what follows.

Given an IFS Φ = {ϕi}i∈Λ of similarities, let

∆n = min{d(ϕi, ϕj) : i, j ∈ Λn , i 6= j}

There are exact overlaps if and only if ∆n = 0 for some n (and hence all large
enough n), and contraction implies that 0 ≤ ∆n ≤ rn for some 0 < r < 1.
However, the decay of ∆n generally need not be faster than exponential. We
say that Φ is exponentially separated if there is a constant c > 0 such that
∆n ≥ cn for all n.

Theorem 2.3 (Hochman [20]). Let Φ be an IFS in R, let µ = µΦ,p be the
self-similar measure, and write s = s(Φ, p). Then either dimµ = min{1, s}, or
else ∆n → 0 super-exponentially. The same statement holds for sets.1

Thus, exponential separation implies no dimension drop. We do not know of
any IFS without exact overlaps for which 1

n log ∆n → ∞, and it is conceivable
that they simply do not exist, which would prove the conjecture.

1The statement for sets follows from the measure case applied to µΦ,p, with p chosen so
that s(Φ, p) = s(Φ). The same remark holds for many theorems in the sequel.
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Corollary 2.4. Within the class of algebraic IFSs on R, Conjecture 2.2 is true.

Indeed, one can choose the metric so that d(ϕ,ψ) is a polynomial in the
coe�cients of ϕ,ψ, and then d(ϕi1 . . . ϕin , ϕj1 . . . ψjn) is a polynomial of degree
O(n) in the coe�cients of the ϕi. If these are algebraic, such an expression
either vanishes, or is bounded below by an exponential cn for some c > 0 (see
Garsia's Lemma 3.4 below).

When exact overlaps exist, one can get a better bound than the Lyapunov
dimension by taking the number of exact overlaps into account. Given Φ and p,
let (ξn)∞n=1 be i.i.d. elements of Φ with distribution p, and let σn = ξnξn−1 . . . ξ1
be the associated random walk on the similarity group. The random walk

entropy of p is de�ned by

hRW (p) = lim
n→∞

1

n
H(σn) (7)

where H(σn) is the Shannon entropy of the discrete random variable σn. The
limit exists by sub-additivity, and if Φ∗ is freely generated by Φ, then hRW (p) =
H(p). Corresponding to (5) we have the bound

dimµ ≤ min{1, hRW (p)

λ(p)
}

The following is a reasonable extension of Conjecture 2.2:

Conjecture 2.5. If µ = µΦ,p is a self-similar measure on R then dimµ =
min{1, hRW (p)/λ(p)}.

The next theorem is proved by the same argument as Theorem 2.3. The
statement �rst appeared in [53].

Theorem 2.6. Let Φ = {ϕi} be an IFS of similarities in R, and suppose that
there is a c > 0 such that for every i, j ∈ Λn either ϕi = ϕj or d(ϕi, ϕj) ≥ cn. Let
µ = µΦ,p be the self-similar measure for Φ. Then dimµ = min{1, hRW (p)/λ(p)}.

An important strengthening of these results is obtained by replacing Haus-
dor� dimension with Lq-dimension. To de�ne it, let Dn denote the dyadic
partition of R into intervals [k/2n, (k + 1)/2n), k ∈ Z, and for q > 1 set

D(µ, q) = lim
n→∞

−
log
∑
I∈Dn

µ(I)q

(q − 1)n

The limit is known to exist for self-similar measures [40], and for such measures,
dimµ = limq↘1Dµ(q). The function q 7→ D(µ, q) is non-increasing in q, and
has the following property: for every α < D(µ, q), there is a constant C such
that µ(Br(x)) ≤ C · r(1−1/q)α, for every x ∈ R. This is in stronger than (3),
which holds only for µ-a.e. x, and non-uniformly.

The Lq-analog of the Lyapunov dimension for a self-similar measure µ =
µΦ,p, is the solution s = sq(Φ, p) of the equation

∑
pqi |ri|(q−1)s = 1, where ri

are the contraction ratios of the maps in Φ. Note that if p = (r
s(Φ)
i )i∈Λ, then

sq(Φ, p) = s(Φ, p) = s(Φ), is independently of q. We always have Dµ(q) ≤
sq(Φ, p).
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Theorem 2.7 (Shmerkin [47]). Let Φ = {ϕi} be an IFS on R and p = (r
s(Φ)
i ).

Let µ = µΦ,p and s = s(Φ, p) = s(Φ). Then either Dµ(q) = s for all q > 1, or
else ∆n → 0 super-exponentially.

In particular, if Φ is exponentially separated, then for every t < min{1, s(Φ)},
there is a C = C(t) > 0 such that µ(Br(x)) ≤ Crt for all x ∈ X and all r > 0.

2.4 Some ideas from the proofs

The main idea is, very roughly, as follows. A self-similar measure µ on R can
be written, locally, as a convolution of a scaled copy of itself with another mea-
sure whose �dimension� (in some �nitary sense) is proportional to the di�erence
s(Φ, p)− dimµ. But convolution is a smoothing operation, and µ ∗ ν has larger
dimension than µ if the dimension of ν is positive. Hence, if there were dimen-
sion drop, at small scales µ would be smoother than itself, which is impossible.

In order to give even a slightly more comprehensive sketch, some preparation
is needed. First, by �smoothing�, we mean that convolving measures generally
results in more �spread out� measures than we started with. The discussion
below is very much in the spirit of additive combinatorics, in which one asks
when the sum A+B of two �nite sets A,B ⊆ Z is substantially larger than A.
�Larger� is often interpreted as |A + B| > C|A| where C > 0 is �xed and the
sets are large, as in Freiman's theorem (e.g. [51]); but in our setting we mean
|A + B| ≥ |A|1+δ. Such a growth condition is closely related to the work of
several authors on the sum-product phenomenon, notably Bourgain [3, 4]. The
version used in Theorem 2.10 and presented below is from [20]. See also the
remark at the end of the section.

We measure how �spread out� a measure is using entropy at a �nite scale.
Recall that Dn is the level-n dyadic partition of R, whose atoms are the intervals
[k/2n, (2 + 1)/2n). The scale-n entropy of a probability measure ν is the
Shannon entropy H(ν,Dn) = −

∑
I∈Dn

ν(I) log ν(I) of ν with respect to Dn.
We refer to [8] for a more thorough introduction to entropy.

Scale-n entropy is a discretized substitute for dimension, and as a �rst ap-
proximation, one can think of it as the logarithm of the number of atoms of Dn
with non-trivial ν mass. In particular if ν is exact dimensional, then

1

n
H(ν,Dn)→ dim ν (8)

For m > n let H(ν,Dm|Dn) = H(ν,Dm)−H(ν,Dn) be the conditional entropy,
i.e. the entropy increase from scale 2−n to 2−m. Assuming (8), we have

1

m− n
H(ν,Dm|Dn) = dim ν + o(1) as n→∞ and m− n→∞

In general, scale-n does not decrease under convolution,2 and for generic
measures it increases as much as possible, i.e. H(θ ∗ ν,Dn) ≈ H(ν,Dn) +

2Actually it could decrease but only by an additive constant, which is negligible with our
1/n-normalization.
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H(θ,Dn) assuming that the right hand side does not exceed one. But there
certainly are exceptions, even cases in which H(θ ∗ ν) ≈ H(ν). But for self-
similar measures, some substantial entropy increase must occur.

Theorem 2.8. For every ε > 0 there exists δ > 0 such that the following holds.
Let µ be a self-similar measure on R with dimµ < 1−ε, and let θ be a probability
measure. Then for n large enough (depending on ε and µ, but not θ),

H(θ,Dn) > εn =⇒ H(θ ∗ µ,Dn) > H(µ,Dn) + δn

This is a consequence of a more general result3 describing the structure of
pairs of measures θ, ν for which H(θ ∗ ν,Dn) ≈ H(ν,Dn). It says, roughly,
that in this case each scale 2−i, 1 ≤ i ≤ n, is of one of two types: either ν
looks approximately uniform (like Lebesgue measure) on 2−i-balls centered at
ν-typical points; or θ looks approximately like an atomic measure on 2−i-balls
centered at θ-typical points. The theorem above follows because self similar
measures of dimension < 1 are highly homogeneous and don't look uniform on
essentially any ball, while if H(θ,Dn) ≥ εn then there is a positive propostion
of balls on which θ does not look atomic. For the full statement see [20].

We return to the proof of Theorem 2.3; we assume for contradiction that
there is both exponential separation and dimension drop. For simplicity, assume
that all the maps in Φ = {ϕi} have the same contraction ratio r, and given n
write

n′ = bn log(1/r)c

so that Dn′ contains atoms of diameter roughly rn. For i ∈ Λn the map ϕi con-
tracts by rn, and all the generation-n cylinders appearing in the representation
µ =

∑
i∈Λn pi ·ϕiµ are translates of each other, so this identity can be re-written

as a convolution
µ = µ(n) ∗ Srnµ (9)

where µ(n) =
∑
i∈Λn pi · δϕi(0), and Stx = tx is the scaling operator. Because

Srnµ is supported on a set of diameter O(rn) = O(2−n
′
), it contributes to

scale-n′ entropy only O(1), so

H(µ(n),Dn′) = H(µ,Dn′) +O(1) = n′ dimµ+ o(n) (10)

Next, chop the measure µ(n) into a convex combination

µ(n) =
∑
I∈Dn′

wI · (µ(n)
I )

where µ(n)
I is µ(n) conditioned on I. Inserting this in (9) we get

µ =
∑
I∈Dn′

wI · µ(n)
I ∗ Srnµ (11)

3For related work on entropy of convolutions, assuming less growth, see Tao [20] and
Madiman [30]. More closely related is Bourgain's work on sumsets, [3, 4].
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Since Φ is exponentially separated there is a constant a such that every pair
of atoms of µ(n) is ran-separated, and so lie in di�erent atoms of Dan′ . A direct
calculation shows that

H(µ(n),Dan′) = −
∑
i∈Λn

pi log pi = nH(p) = n′ dimµ+ εn

where ε = H(p) − dimµ · log(1/r) > 0 because of dimension drop. Combined
with (10) this gives

H(µ(n),Dan′ |Dn′) = εn+ o(n) (12)

By classical identities, this entropy is the average of the entropies of µ(n)
I , so for

a µ-large proportion of I ∈ Dn′ ,

H(µ
(n)
I ,Dan′ |Dn′) =

ε

2
n+ o(n)

Thus,

(a− 1)n′ · dimµ = H(µ,Dan′ |Dn′)
≥

∑
I∈Dn′

wI ·H(µ
(n)
I ∗ Srnµ,Dan′ |Dn′)

=
∑
I∈Dn′

wI ·H(µ
(n)
I ∗ Srnµ,Dan′)− o(n)

≥ (a− 1)n′ · dimµ+ δn− o(n)

where in the �rst inequality we plugged in the identity (11) and used concavity
of the entropy function, in the next line we eliminated the conditioning because
µ

(n)
I ∗ Srnµ is supported on O(1) atoms of Dn′ , and in the last line, we applied

Theorem 2.8 together with (12). This is the desired contradiction.
Theorem 2.7 is proved using a very similar philosophy, but with the Lq-

dimension of �nite-scale approximations replacing entropy as the measure of
smoothness. We refer the reader to the original paper for details.

2.5 Higher dimensions

In higher dimensions, Conjecture 2.2 is false in its stated form. To see this start
with two IFSs, Φ1 and Φ2, on R. Assume that s(Φ1) > 1 and the attractor
X1 of Φ1 is an interval, and the attractor X2 of Φ2 satis�es dimX2 = s(Φ2).
We can also assume neither Φ1 nor Φ2 have exact overlaps. Let Φ = Φ1 × Φ2

be the IFS consisting of all maps of the form x 7→ (ϕ(x), ψ(x)) with ϕ ∈ Φ1

and ψ ∈ Φ2. Then Φ has attractor X1 ×X2 of dimension dimX1 + dimX2 <
s(Φ1) + s(Φ2) = s(Φ), and Φ has no exact overlaps.

In the example, there are horizontal lines intersecting X in an interval (a
copy of X1) and the family of such lines is preserved by Φ. It seems likely
that this is the only new phenomenon possible in higher dimensions. More
precisely, let us say that a set X has full slices on a linear subspace V ≤ Rd,

9



if dimX ∩ (V + a) = dimV for some a ∈ Rd. Similarly we say that a measure
µ has full slices on V if the system {µVx }x∈Rd of conditional measure on parallel
translates of V satis�es dimµVx = dimV for µ-a.e. x. Finally, we say that V
is linearly invariant under Φ = {ϕi} if UiV = V for all i, where Ui is the
linear part of ϕI . We say that V is non-trivial if 0 < dimV < d.

Conjecture 2.9. Let X = XΦ and µ = µΦ,p be a self-similar measure in Rd.
Then dimension drop for X implies that there is a non-trivial linearly invariant
subspace V ≤ Rd on which X has full slices, and the analogous statement holds
for µ.

De�ne a metric d on the similarity group Aff(Rd) of Rd using any of the
metrics described after equation (6).

Theorem 2.10 (Hochman). Let µ = µΦ,p be a self-similar measure in Rd with
Lyapunov dimension s. Then at least one of the following holds:

• dimµ = min{d, s(Φ)}.

• ∆n → 0 super-exponentially.

• There is a non-trivial linearly invariant subspace V ≤ Rd on which µ has
full slices.

In particular, if the linear parts of the maps ϕi act irreducibly on Rd then di-
mension drop implies ∆n → 0 super-exponentially. If additionally {Ui} generate
a free group and have algebraic entries, then there is no dimension drop.

The same holds for the attractor.

The analogous statements for Lq dimension are at present not established,
but we anticipate that some version of them holds, at least in the case where
the linear parts of the contractions are homotheties.

In dimension d ≥ 3 the orthogonal group is non-abelian, and the random
walk associated to the matrices Ai may have a spectral gap. Then a much
stronger conclusion is possible:

Theorem 2.11 (Lindenstrauss-Varjú [29]). Let U1, . . . , Uk ∈ SO(d) and p =

(p1, . . . , pk) a probability vector. Suppose that the operator f 7→
∑k
i=1 pif ◦ Ui

on L2(SO(d)) has a spectral gap. Then there is a number r̃ < 1 such that for
every choice r̃ < r1, . . . , rk < 1, and for any a1, . . . , ak ∈ Rd, the self similar
measure with weights p for the IFS {riUi + ai}ki=1 is absolutely continuous with
respect to Lebesgue measure on Rd.

Contrasting this statement with the previous corollary, in the former we get
dimµ = d as soon as s(Φ) > d, whereas in the latter we get absolute continuity
only when the contraction is close enough to 1, but miss part of the potential
parameter range. It is not known if this additional assumption is necessary for
the conclusion.
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2.6 Parametric families

Many classical problems in geometric measure theory involve parametric fami-
lies of IFSs, e.g. the Bernoulli convolutions and projection problems discussed
below, and the {0,1,3}-problem mentioned earlier. In these problems one wants
to show that dimension drop is rare in the parameter space.

To set notation, suppose that {Φt}t∈I is a parametric family of IFSs on R,
so ϕti(x) = ri(t)(x− ai(t)) where ri : I → (−1, 1) \ {0} and ai : I → R are given
functions. For in�nite sequences i, j ∈ ΛN set

∆i,j(t) = lim
n→∞

ϕti1...in(0)− ϕtj1...jn(0)

It is clear that if Φt has exact overlaps then there exist i, j ∈ ΛN with ∆i,j(t) = 0,
but ∆i,j may certainly vanish also when there are non-exact overlaps. However,
under an analyticity and non-degeneracy assumption, the zeros of ∆i,j(·) will
be isolated, and the function will grow polynomially away from its zeros.4 Fur-
thermore, by a compactness argument, the exponent rate is uniform. Also,
assuming analyticity, lower bounds on ∆i,j can be translated to lower bounds
for |ϕti1...in(0)− ϕtj1...jn(0)|, and hence for d(ϕti1...in , ϕ

t
j1...jn

). From these ingre-
dients one obtains e�cient covers of the set of parameters for which Φt is not
exponentially separated. The end result of this analysis is the following.

Theorem 2.12 (Hochman [20]). Let I ⊆ R be a compact interval, let r : I →
(−1, 1) \ {0} and ai : I → R be real analytic, and let Φt = {ϕi,t}i∈Λ be the
associated parametric family of IFSs, as above. Suppose that

∀i, j ∈ ΛN ( ∆i,j ≡ 0 on I ⇐⇒ i = j ) .

Then the set of t ∈ I for which there is dimension drop has Hausdor� and
packing dimension 0.

Analogous statements hold in Rd, giving, under some assumptions, that the
exceptional parameters have dimension ≤ d− 1. For details see [21].

2.7 Further developments

The same questions can be asked about attractors of non-linear IFSs. The
only such case where a version of Theorem 2.3 is known is for linear fractional
transformations [23]. Little is known beyond this case.

Another natural problem is to extend the results to self-a�ne sets and mea-
sures, de�ned in the same way but using a�ne maps rather than similarities.

4In contrast, the classical transversality method for parametric families depends on showing
that ∆i,j grows linearly away from its zeros, i.e., it requires one to show that all zeros are
simple. When this holds one often gets stronger conclusions, e.g. absolute continuity of the
measures outside a small (though generally not zero-dimensional) set of parameters. But
it is much harder to establish that the zeros are simple, and not always true. For more
information we refer to [38, 37]. A major bene�t of the method above is that polynomial
growth is automatic.
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This area is developing rapidly, and it seems likely that analogous results will
be established in the near future.

Finally, we mention a result of Fraser, Henderson, Olson and Robinson,
showing that if a self-similar set in R does not have exact overlaps then its
Assouad dimension is one [13]. This is a very weak notion of dimension, equal
to the maximal dimension of any set which is a Hausdor� limit of magni�cations
of X. It says nothing about dimX itself, but it lends moral support to the idea
that without exact overlaps, X is �as large as possible�.

3 Bernoulli convolutions

In the �supercritical� case s(Φ) > 1, Conjecture 2.2 has a stronger variant:

Conjecture 3.1. Let µ = µΦ,p be a self-similar measure on R. If there are no
exact overlaps and5 s(Φ, p) > 1, then µ is absolutely continuous with respect to
Lebesgue measure.

The main evidence supporting the conjecture comes from the study of para-
metric families, the primary example of which are Bernoulli convolutions. For
0 < λ < 1 the Bernoulli convolution with parameter λ is the distribution
νλ of the real random variable

∑∞
n=0±λn, where the signs are chosen i.i.d. with

P(+) = P(−) = 1
2 . The name derives from the fact that νλ can be written as

the in�nite convolution of the measures 1
2 (δ−λn + δλn), n = 0, 1, 2, . . ., but it is

also a self-similar measure for the IFS Φλ = {ϕ±1}, de�ned by assigning equal
probabilities to each of the maps

ϕ±1(x) = λx± 1. (13)

Let Λ = {±1}. For i, j ∈ Λn, the maps ϕi, ϕj contract by λn, so

d(ϕi, ϕj) = |ϕi(0)− ϕj(0)| = |
n∑
k=0

(ik − jk)λk|

Hence, since ik− jk ∈ {−2, 0, 2}, exact overlaps occur if and only if λ is the root
of a polynomial in with coe�cients −1, 0, 1. Write ν(n)

λ for the distribution of
the �nite sum

∑n
k=0±λk.

The case λ < 1
2 is simple from the point of view of dimension: Φλ satis�es

the SSC and dim νλ = log λ/ log(1/2). Also, ν1/2 is uniform on [−2, 2].
Things are more interesting for λ > 1

2 . Then the Lyapunov dimension is
> 1, the attractor is an interval, and Φλ has overlaps. From Conjectures 2.2
and 3.1 one would expect that νλ is absolutely continuous (and dim νλ = 1)
unless there are exact overlaps. Thus, we shall say that λ is a.c.-exceptional
or dim-exceptional, if νλ is singular or dim νλ < 1, respectively. We denote
the sets of these parameters by Eac and Edim.

5By Shief's theorem [44], absolute continuity can fail in the �critical� case s(Φ, p) = 1.
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It was Erd®s who found the �rst, and so far only, exceptional parameters: if
λ−1 is a Pisot number6 then λ is a.c.-exceptional, and Garsia later showed that
such λ are also dim-exceptional. Perhaps these are the only ones; some support
for this is Salem's theorem that |ν̂λ(t)| → 0 as t → ∞ if and only if λ−1 is not
Pisot.

3.1 Bounds on the size of the exceptional parameters

Much of the work on Bernoulli convolutions has focused on bounding the size of
the set of exceptions. The work of Erd®s and Kahane implies that dim((a, 1) ∩
Eac)→ 0 as a↗ 1, and Erd®s proved that dim νλ → 1 as λ→ 1 (see also [37]).

A major step forward was Solomyak's proof in 1995 that νλ is a.c. for almost
every λ ∈ ( 1

2 , 1) [50]. This was one of the early successes of the transversality
method. Some improvements, including some bounds on the dimension of ex-
ceptions, were later obtained by Peres and Schlag [37].

Theorem 2.12 leads to further improvements:

Theorem 3.2 (Hochman [20]). dim νλ = 1 outside a set of λ of Hausdor� and
packing dimension 0.

Currently, these techniques don't give absolute continuity directly, but com-
bined with Fourier-theoretic information, Shmerkin managed to prove

Theorem 3.3 (Shmerkin [45, 47]). Outside a set of λ of Hausdor� dimension
0, the measure νλ is absolutely continuous with density in Lp for all 1 ≤ p <∞.

Here is the idea of the proof. Fix an integer k, and split the random sum as

∞∑
n=1

±λn =
∑

n=0 mod k

±λkn +
∑

n6=0 mod k

±λn (14)

The �rst term on the right has distribution νλk . Write τλk for the distribution
of the second term. Since the two series are mutually independent, we get
νλ = νλk ∗ τλk . Next, using an energy-theoretic argument, it is shown that the
convolution will be absolutely continuous provided that the Fourier transform
ν̂λk has power decay (i.e. |ν̂λk(t)| ≤ t−c for some c = c(λ) > 0) and dim τλk =
1. Now, a classical result of Erd®s and Kahane (see [38]) says that outside a
zero-dimensional set E′ of parameters, the Fourier transform ν̂λk indeed has
power decay; on the other hand, τλk is itself a parametric family of self-similar
measures, and Theorem 2.12 implies that there is dimension drop for a set E′′

of parameters of dimension zero. For λ /∈ E′′ we will have dim τλk = 1 whenever
the Lyapunov dimension is ≥ 1, which by a short calculation happens when
λ ∈ ((1/2)1−1/k, 1). Thus, νλ is absolutely continuous for λ ∈ [(1/2)1−1/k, 1] \
(E′ ∪ E′′). Taking the union over k gives the claim.

In order to obtain densities in Lp, an analogous argument is carried out using
Theorem 2.7 instead of Theorem 2.3.

6A Pisot number is an algebraic integer greater than one, all of whose conjugates lie in the
interior of the unit disk.
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There remains a di�erence between Theorems 3.2 and 3.3. In the former, a
parameter is �good� if Φλ is exponentially separated, which gives new explicit
examples, e.g. all rational parameters. The set E′′ in the above is similarly
explicit. But E′ is completely ine�ective. Consequently, to get new examples
of absolutely continuous νλ requires other methods, see Section 3.3.

3.2 Mahler measure

The Mahler measure of an algebraic number λ is Mλ = |a| ·
∏
|ξ|>1 |ξ| where

the product is over all Galois conjugates ξ of λ, and a is the leading coe�cient of
its minimal polynomial. This is a standard measure of the size or complexity of
an algebraic number. It �rst appeared in connection with Bernoulli convolution
in the following lemma of Garsia:

Lemma 3.4 (Garsia [17]). Let λ > 1 be algebraic with conjugates λ1, . . . , λs 6=
λ, of which σ lie on the unit circle. Let p(x) =

∑n
i=0 aix

i be an integer polyno-
mial and A = max{|ai|}. Then either p(λ) = 0, or

|p(λ)| ≥
∏
|λi|6=1 ||λi| − 1|

As(n+ 1)σ
(∏
|λ1|>1 |λi|

)n ≥ Cλ
As(n+ 1)σMn

λ

In particular, any distinct atoms of the n-th approximation ν
(n)
λ of νλ are sep-

arated by at least Cλ((n+ 1)σMλ)−1.

Recently, Mahler measure has been related to the random walk entropy hλ
associated to νλ in Section 2.3:

Theorem 3.5 (Breuillard-Varjú [6]). There exists a constant c > 0 such that
for any algebraic number λ ∈ ( 1

2 , 1),

cmin{1, logMλ} ≤ hλ ≤ min{1, logMλ}

In particular, if λ > min{2,Mλ}−c (for c a as in the theorem), then dim νλ=1.
We do not discuss the proof of the theorem here, the reader may consult [6].

3.3 Absolute continuity for algebraic parameters

By the identity νλ = νλk ∗ τλk , which follows from (14), ν1/21/k = ν1/2 ∗ τ1/2,
hence, since ν1/2 is Lebesgue measure on an interval, ν1/21/k is absolutely con-
tinuous. Garsia identi�ed a less trivial class of examples: those λ such that
λ−1 is an algebraic integer, and Mλ = 2. Such numbers are not roots of 0,±1-
polynomials, so

∑n
i=0±λn takes 2n equally likely values, and by Lemma 3.4 the

values are c · 2−n-separated (for some c). This implies that νλ = lim ν
(n)
λ is ab-

solutely continuous. Until recently these were the only examples. We now have
the following, which gives many more. For example, it applies to every rational
number close enough to one in a manner depending on their denominator [53,
Section 1.3.1].
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Theorem 3.6 (Varjú [53]). For every ε > 0 there is a c > 0 such such if
λ ∈ ( 1

2 , 1) is algebraic and satis�es

λ > 1− cmin{logMλ, (logMλ)−(1−ε)}

Then νλ is absolutely continuous with density in L logL.

The proof relies on the following, which goes back to Garsia:

Theorem 3.7 (Garsia [18]). νλ is absolutely continuous with density in L logL

if and only if H(ν
(n)
λ ) = n−O(1).

The argument in Theorem 2.3 gives H(ν
(n)
λ ) = n− o(n); in order to get the

O(1) error required by Garsia's theorem, Varjú proves two quantitative vari-
ants of the general entropy-growth result underlying Theorem 2.8. Roughly
speaking,7 the �rst shows that if α is small enough, and measures θ1, θ2 satisfy
H(θi,Dn+1|Dn) > 1 − α, then H(θ1 ∗ θ2,Dn+1|Dn) > 1 − α2. The second is
analogous to Theorem 2.8 but with δ = cε. Now, �xing N , split the series∑N
n=0±λn into k = [log(N2)] �nite sums

∑
n∈Ii ±λ

n of distribution ν(N,i)
λ re-

spectively, so that ν(N)
λ = ν

(N,1)
λ ∗ . . .∗ν(N,k)

λ . If we can choose I1, . . . , Ik so that

H(ν
(N,i)
λ ,DN |DN−1) > 1 − α0, with α0 small, we can apply the �rst entropy

growth result iteratively, and get H(ν
(N)
λ ,DN |DN−1) > 1 − α2log k

0 = O(1/N2);

summing over 0 ≤ N ≤ M gives H(ν
(M)
λ ) = M − O(1), as desired. In order

to �nd I1, . . . , Ik as above, one uses a similar argument, relying on the sec-
ond entropy-growth theorem to amplify the random walk entropy provided by
Theorem 3.5. For more details, we refer to the original paper.

3.4 Dimension results for other parameters

Let P be the set of polynomials with coe�cients 0,±1 and set Pn = {f ∈
P : deg f ≤ n}. Suppose that dim νλ < 1. Then by Theorem 2.3, ∆n →
0 super-exponentially, i.e. there exist pn ∈ Pn such that pn(λ) → 0 super-
exponentially. This does not force λ to be algebraic, but using transversality
arguments or Jensen's formula, one can �nd roots λn of pn such that |λn−λ| → 0
super-exponentially, so λn, λn+1 are super-exponentially close. If the roots of
elements of Pn were su�ciently (i.e. exponentially) separated, this would force
the sequence λn to stabilize, and λ would be algebraic, in fact a root of some
pn0
∈ P . Thus, an a�rmative answer to the following problem would imply

dim νλ = 1 for all λ without exact overlaps:

Question 3.8. Does there exist a constant c > 0 such that if α 6= β are roots
of (possibly di�erent) polynomials in Pn, then |α− β| > cn?

The best current bound, due to Mahler, is of the form |α − β| > n−cn for
some constant c > 0 [31]. In order for this to be useful, one needs to get a similar

7We have omitted many assumptions, logarithmic factors, and even then the entropy in-
equalities are false using Shannon entropy; one must use spatially averaged entropy, see [53].
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rate for the decay of ∆n in Theorem (2.3). This is essentially the content of the
following:

Theorem 3.9 (Breuillard-Varjú [7]). Suppose that dim νλ < 1 for some λ ∈
( 1

2 , 1). Then there exist arbitrarily large n for which there is an algebraic number
ξ that is a root of a polynomial in Pn, such that

|λ− ξ| < exp(−nlog log logn)

and
dim νξ < 1.

Compared to the argument at the start of the section, notice that the num-
bers ξ are only guaranteed to exist for in�nitely many n, not all large enough
n. Therefore, even though the rate is better than Mahler's bound, one cannot
conclude that the approximants stabilize. But, most importantly, the algebraic
number ξ are guaranteed to be themselves exceptional for dimension. The latter
has a dramatic implication:

Theorem 3.10 (Breuillard-Varjú [7]). Edim = Edim ∩Q, where Q denotes the
algebraic closure of Q.

This reduces the question of the dimension of Bernoulli convolutions to the
algebraic case. In particular, it is known that the Pisot numbers form a closed
set, so if these were shown to be the only algebraic parameters with dimension
drop, these would be the only exceptions altogether. Also, recall that Lehmer's
famous problem asks whether inf{Mλ : Mλ 6= 1} > 1. If this were true, then
Theorem 3.5 would imply that there is an ε > 0 such that dim νλ = 1 for every
algebraic λ ∈ (1− ε, 1); combined with Theorem 3.10, this gives:

Theorem 3.11 (Breuillard-Varjú [7]). If the answer to Lehmer's problem is
a�rmative, then there is an ε > 0 such that dim νλ = 1 for every λ ∈ (1− ε, 1).

There is no known converse, but for a related result see [38, Proposition 5.1].
Finally, using the information gained about algebraic approximants of excep-

tional parameters, Breuillard and Varjú have managed to �nd the �rst explicit
transcendental parameters for which νλ has full dimension; e.g. e, 1/ ln 2, and
other natural constants. For details see [7].

4 Projection and slice theorems

A basic principle in (fractal) geometry is that projections of a set typically
should be �as large as possible�, and slices should be correspondingly small. By
a projection of a set we mean its image under an orthogonal projection πV
to a linear subspace V , and by a slice we mean its intersection with an a�ne
subspace. The trivial bound for projections is dimπVX ≤ min{dimX,dimV }
(because πV is Lipschitz and has range V ). The following theorem shows that
this is generally the right bound, and that slices behave dually. Let G(d, k)
denote the manifold of k-dimensional a�ne subspaces of Rd.
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Theorem 4.1 (Marstrand [32], Mattila [33]). Let E ⊆ Rd be Borel and 1 ≤
k < d. Then for a.e. V ∈ G(d, k),

dimπV E = min{k, dimE}

If in addition dimE > k then8 πV (E) has positive k-dimensional volume for
a.e. V ∈ G(d, k), and for a.e. y ∈ V with respect to the volume,

dimE ∩ π−1
V (y) ≤ max{0,dimE − k}

Kaufman, Falconer and Mattila (see e.g. [34]) also bounded the dimension
of the set of exceptional V ∈ G(d, k), e.g. for d = 2 and k = 1, if dimE < k the
exceptions have dimension ≤ dimE, and if dimE > k it is at most d− dimE.

What these general results for generic directions fail to give is any informa-
tion at all about particular directions. For �natural�, well-structured sets, one
would expect to be able to be more precise. What one expects in such cases is
that the projections will be as large as possible unless there is some combinato-
rial or algebraic obstruction; and that slices be correspondingly small.

In the coming discussion we restrict attention to self-similar sets in R2, where
results are more complete. We mention measures only occasionally, and multi-
dimensional analogues, which require more assumptions. We also do not discuss
results on randomly generated fractals, for this see [41, 36, 48].

4.1 Dimension conservation

Heuristically, projections to V and slices in direction V ⊥ are complementary,
in the sense that having a large image forces most slices to be small, and vice
versa. This is exactly true for �nite-scale entropy, and combinatorial versions
can also be formulated. For dimension, this duality does not always hold. The
following �dimension conservation�, a relative of the Ledrappier-Young formula,
result marked the start of the current phase of research.

Theorem 4.2 (Furstenberg [16]). Let X ⊆ Rd be a self-homothetic self-similar
set. Then for every V ∈ G(d, k), we have

dimπVX + sup
y∈V

dim(X ∩ π−1
V (y)) ≥ dimX

For self-homothetic measures µ there is in fact equality for πV µ-a.e. y, and
until recently it was not known whether this, or the theorem might apply also
outside of homotheties. It turns out that

Theorem 4.3 (Rapaport [42]). There exists a self-similar measure µ on R2

with dimµ > 1, uniform contractions and uniform dense rotations, such that
for a dense Gδ set of directions V the conditional measures on translates of V
are a.s. atomic, hence

dimπV µ+ esssup
y∼πV µ

dimµπ−1(y) < dimµ

8Although unrelated to our discussion, it is worth mentioning that if dimE = k, then
πV E will have positive k-dimensional volume depending on whether it is recti�able or purely
unrecti�able. See [34].
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Problem 4.4. For is self-similar set in R2 with dense rotations, do all projec-
tions have positive length?

4.2 Projections of self-homothetic sets

Self-homothetic self-similar setsX have the special property that each projection
πVX is also self-homothetic, being the attractor of ΦV = {ϕi,V (x) = rix +
πV ai}. Assuming that Φ has strong separation, and �xing a self-similar measure
onX, Theorem 2.12 applies to the parametric family {ΦV }. In the case dimX >
1 an argument similar to that in Theorem 3.3 also applies. All in all, we get

Theorem 4.5 (Hochman [20], Shmerkin [46]). [46]If X ⊆ R2 is self-homothetic
then dimπVX = min{1,dimX} for all but a zero dimensional set of V ∈
G(2, 1). If also dimX > 1, the projection will have positive length outside a
set of V of dimension zero.

The reason no separation condition is needed is that a self-similar set X
always contains smaller self-similar sets of dimension arbitrarily close to dimX,
and satisfying strong separation and uniform contraction [39], and it is enough
to show that these subsets have large projections.

More is true when the maps ϕi are algebraic, by which we mean that the
parameters ri, ai are algebraic. The conjecture that this is the case was raised
by Furstenberg for the so-called 1-dimensional Sierpinski gasket, �rst appearing
in the work of Kenyon [27]. The next theorem follows from Corollary 2.4 and
an argument (originally due to Solomyak) showing that if the projected IFS ΦV
does not have exact overlaps, then it is exponentially separated.

Theorem 4.6 ([20]). If X is the attractor of an algebraic IFS consisting of
homotheties, then dimπVX = min{1,dimX} for all except at most countably
many V , which are among the V which collapse cylinders, i.e. πV ϕi = πV ϕj

for some n and i, j ∈ Λn.

There certainly can exist exceptional directions, but they have not been
entirely characterized (a special case was analyzed by Kenyon [27]). Currently,
no analogous result exists for the Lebesgue measure of the projection in the
regime dimX > 1. Finally, note that the result for measures seems to require
strong separation, since for measures, there is no analog of the trick of passing
to a sub-self-similar set.

All statements above hold if instead of self-homothetic sets we allow IFSs
whose orthogonal parts generate a �nite group of rotations.

4.3 Projections of sets and measures with rich symmetries

Let Φ = {ϕi} be an IFS in R2 with ϕi(x) = riOix + ai, with 0 < r1 < 1, Oi
an orthogonal matrix, and ai ∈ R2. We say that Φ has irrational rotations
if at least one Oi is an irrational rotation (has in�nite order). Notice that
πV ϕiX ⊆ πVX, and πV ϕi, up to change of coordinates, is projection to O−1

i V .
Iterating this and using the fact that {O−1

i1
. . . O−1

in
V }i∈Λ∗ is dense, we see that
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πVX contains subsets approximating every other projection πWX. This can be
used to prove that there are no exceptional directions:

Theorem 4.7 ([39], [35], [22]). Let X ⊆ R2 be a self-similar set with dense
rotations. Then dimπVX = min{1,dimX} for every V . The same holds for
self-similar measures assuming the open set condition.

This was �rst proved for sets by Peres and Shmerkin [39] for sets. Nazarov-
Peres-Shmerkin [35] proved an analog for measures assuming uniform rotations.
Hochman-Shmerkin proved the general version [22]. See also Farkas [11].

We brie�y sketch the proof of Hochman-Shmerkin. A central ingredient is
the method of local entropy averages. Suppose that ν is any probability measure
on Rd. Let Dn(x) denote the unique atom of Dn containing x and let

νx,n =
1

ν(Dn(x))
ν|Dn(x)

Thus the sequence (νx,n)∞n=1 is what you see when you �zoom in� to x along
dyadic cells.

Theorem 4.8 (Hochman-Shmerkin [22]). Let ν be a Borel probability measure
on Rd, and V ∈ G(d, k). If for some α ≥ 0 and m ∈ N

lim inf
N→∞

1

N

N∑
n=1

H(νx,n,Dn+m) ≥ α (15)

then dimπV ν ≥ α−Od,k(1/m).

If µ is self-similar with OSC, then µx,n is a piece (or a combination of bound-
edly many pieces) of a cylinder measure of diameter approximately 2−n, and
if there are dense rotations, for µ-a.e. x the rotations observed along the se-
quence (µx,n)∞n=1equidistribute in the circle. Now, by Marstrand's theorem,
dimπV µ = min{1,dimµ} for a.e. line V , so by (8), for large enough m, with
high probability over V we have 1

mH(πV µ,Dm) > min{1,dimµ}− ε. This con-
dition on V is essentially open, so (µx,n)∞n=1 consists predominantly of measures
that, after re-scaling by 2n, satisfy this inequality. Theorem 4.8 now completes
the argument.

This method also gives the following, which was conjectured by Furstenberg:

Theorem 4.9 (Hochman-Shmerkin [22]). Let Ya, Yb ⊆ [0, 1] be closed and in-
variant under x 7→ ax mod 1, x 7→ bx mod 1, and assume log a/ log b /∈ Q. Then
dimπV (Ya × Yb) = min{1,dimYa + dimYb} for all V except the horizontal and
vertical directions.

The methods also apply in non-linear cases. This has some overlap with the
work of Moreira on nonlinearly generated fractals, which predates all the results
above, but does not apply in the linear case. See [9].

Problem 4.10. If Ya, Yb are as in the theorem, and dimYa × Yb > 1, does
πV (Ya × Yb) have positive Lebesgue measure for all V not parallel to the axes?

Surprisingly the analogous problem for products of self-similar measures has
a negative answer, see Nazarov-Peres-Shmerkin [35].
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4.4 Slices

Dual to the projections problem is that of slices. When projections achieve
their maximal value, one might expect slices not to exceed their typical value.
Furstenberg [15] conjectured this for non-vertical/horizontal slices of products
as in Theorem 4.9. Very recently two independent proofs of this emerged:

Theorem 4.11 (Shmerkin [47], Wu [54]). Let X = Ya × Yb be as in Theorem
4.9. Then dim(X ∩ `) ≤ max{0,dimX − 1} for all lines ` ⊆ R2 not parallel to
the axes. Similarly if X is self-similar set with uniform contraction and uniform
dense rotations, the bounds holds for all `.

The case dimX < 1/2 was proved by Furstenberg. He showed that if dimX∩
` = α, then there exists a stationary ergodic process Z = (xn, θn)∞n=1 with
xn ∈ X and θn ∈ [0, 1], such that a.s. the line `(xn, θn) of slope θn through xn
satis�es dim(X ∩ `(xn, θn)) = α, and the process (θn) has pure point spectrum.
Thus θ1 is uniform on [0, 1], so in a.e. direction there is a pair x′, x′′ ∈ X with
x′ − x′′ pointing in that direction. This implies dimX ≥ 1/2.

Wu's proof is ergodic-theoretic and begins with the same construction. Now,
if there were a point ξ ∈ X such that the distribution of θ1 is uniform given
x1 = ξ, this would give a �bouquet� of α-dimensional slices passing through ξ
and pointing in a 1-dimensional set of directions, and imply dimX ≥ 1 +α, the
desired bound on α. To �nd such ξ, �rst apply a classical theorem of Sinai to
get a Bernoulli factor W of the process Z = (xn, θn) exhausting the entropy, i.e.
h(Z|W ) = 0. Let Pw denote the disintegration of the distribution of Z over w ∈
W and let Qw = E(x1|w) be the image of Pw in X. Next, self-similarity gives an
expanding conformal dynamics onX, and the process Z can be constructed such
that dimQw is proportional to h(Z|W ), hence dimQw = 0. Finally, Θ = (θn)
is a rotation and W is Bernoulli, by Furstenberg's disjointness theory [14], Θ is
independent of W , hence θ1 is distributed uniformly conditioned on w. Thus,
there is a family of slices of dimension α, with uniformly distributed directions,
passing through the points of the zero-dimensional measure Qw. From this one
can construct (approximations of) the desired bouquets.

Shmerkin's proof is entirely di�erent. Consider the self-similar case with the
natural self-similar measure µ on X. It is a basic fact that if infq>1D(πV µ, q) =
α, then dim(X ∩ π−1

V (y)) ≤ dimX − α for all y. Thus the goal is to show that
the Lq dimension is maximal in all directions. Now, πV µ are not self-similar
but it has a convolutions structure, because all cylinders of a given generation
in µ di�er only by translations. By an argument similar to Theorems 2.7 and
2.12, we conclude that infq>1D(πV µ, q) = min{1,dimX} for a large set of V .
To extend this for all directions, one uses (among many other things) unique
ergodicity of a certain cocycle arising from the rotational symmetry of X.

Finally, Theorem 2.7 implies an Lq version of Theorem 4.6, which gives a
dual result for the slices, con�rming another old conjecture of Furstenberg:

Theorem 4.12 (Shmerkin [47]). Let X ⊆ R2 be a self-homothetic algebraic
self-similar measure. Then outside a countable set of directions, there are no
exceptional slices.
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