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Abstract. We study fractal measures on Euclidean space through the dynamics of

“zooming in” on typical points. The resulting family of measures (the “scenery”), can be

interpreted as an orbit in an appropriate dynamical system which often equidistributes for

some invariant distribution. The first part of the paper develops basic properties of these

limiting distributions and the relations between them and other models of dynamics on

fractals, specifically to Zähle distributions and Furstenberg’s CP-processes. In the second

part of the paper we study the geometric properties of measures arising in these contexts,

specifically their behavior under projection and conditioning on subspaces.
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1. Introduction

This work is a systematic study of a class of measures, called uniformly scaling measures

(USMs), and associated distributions on measures, called fractal distributions (FDs), which

capture the notion of self-similarity (or “fractality”) of a measure on Euclidean space in terms

of the dynamics of rescaling and translation. USMs were introduced abstractly by Gavish

[15] though examples were studied earlier by many authors, e.g. Patzschke and Zähle [25],

Bandt [2, 1], and Graf [17]. Fractal distributions, which we define here, generalize Zähle’s

scale-invariant distributions [30] and are very closely related to Furstenberg’s CP-processes

[12, 14]. They may also be viewed as ergodic-theoretic analogues of the scenery flow for sets

which was studied, among others, by Bedford and Fisher [3, 4, 5].
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The models we discuss here are sufficiently general so as to unify the treatment of many

examples of interest in fractal geometry and dynamics, but at the same time are sufficiently

structured that their geometric behavior is far better than general measures.

In particular, this work was motivated by some recent results by Furstenberg [14], Peres

and Shmerkin [27], and Hochman and Shmerkin [19], on the geometry of measures which

arise from certain combinatorial constructions or as invariant measures for certain dynamics.

The behavior of such measures under projections and conditioning on subspaces was shown

to be more regular than that of general measures. One of our motivations for the present

work was to place these results in a more general framework and to clarify some of the objects

involved. We also obtain new results for general measures by relating them to structured

measures which arise from them using a limiting procedure.

In the remainder of this introduction we present the main definitions and results. More

details discussion, examples and proofs are provided in the subsequent sections.

1.1. Standing notation. Throughout the paper d will be a fixed integer dimension. Equip

R
d with the norm ‖x‖ = sup |xi| and the induced metric. Br(x) is the closed ball of radius

r around x; in particular, B1(0) = [−1, 1]d. We abbreviate

Br = Br(0)

Let λ denote Lebesgue measure on R
d and δa the point mass at a.

Let M = M(Rd) denote the space of Radon measures on R
d with the weak-* topology.

For a measurable space X (e.g. a topological space with the Borel structure) let P(X)

denote the space of probability measures X . When X is a compact metric space we give

P(X) the weak-* topology, which is also compact and metrizable.

We reserve the term distribution for members of P(M) and for probability measures on

similarly “large” spaces, denoting them by P,Q,R, and use the term measure exclusively

for members of M, which are denoted µ, ν, η etc. We generally use brackets to denote

operations which produce distributions from measures, e.g. the operations 〈µ〉U , 〈µ〉x,T ,

〈µ, x〉N defined below.

Write µ ∼ P to indicate that µ is chosen randomly according to the distribution P , and

similarly x ∼ µ. We also write µ ∼ ν (or P ∼ Q) to indicate equivalence of measures i.e.

that µ, ν (or P,Q) have the same null sets. Which of these is intended will be clear from

the context.

If µ ∈ M and µ(A) > 0 then µ|A ∈ M is the restricted measure on A, i.e.

µ|A(B) = µ(A ∩B)

and, assuming 0 < µ(A) <∞, let µA ∈ M be normalized version of µ|A, i.e.

µA(B) =
1

µ(A)
µ(A ∩B)
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Finally, define two (partial) normalization operations ∗, � : M → M by

µ∗ =
1

µ(B1)
µ

µ� = (
1

µ(B1)
µ)|B1

so that µ� = µB1 . The operations are defined on the measurable subset {µ ∈ M : µ(B1) >

0}. We apply these operations also to sets and distributions, so

M∗ = {µ ∈ M : µ(B1) = 1}

M� = {µ ∈ M : µ is a probability measure on B1}

∼= P(B1)

P ∗ is the push-forward of the distribution P through µ 7→ µ∗, and similarly P� ,etc.

For x ∈ R
d let Tx : R

d → R
d denote the translation taking x to the origin:

Tx(y) = y − x

and given a ball B = Br(x) we write TB for the orientation-preserving homothety mapping

B onto B1, i.e.

TB(y) =
1

r
(y − x)

Finally, we define scaling operators on R
d by

St(y) = ety

Note the exponential time scale, which makes S = (St)t∈R into an additive R-action on R
d

by linear transformations (i.e. Ss+t = SsSt).

For f : R
d → R

d and µ ∈ M write fµ for the push-forward of µ through f , that is,

fµ(A) = µ(f−1A). Thus the operators Tx, St induce translation and scaling operations on

M, given by

Txµ(A) = µ(A+ x)

Stµ(A) = µ(e−tA)

We also append ∗, � to operations on measures to indicate post-composition with the cor-

responding normalization operator:

S∗
t µ = (Stµ)∗

S�

t µ = (Stµ)�

and similarly T�

x etc. Then S∗ = (S∗
t )t∈R is again an additive R-action on the measurable

set {µ ∈ M∗ : 0 ∈ suppµ}, and S� = (S�

t )t∈R+ is an additive R
+-action, though note that

the restriction to B1 is not an invertible operations, so the S�

t are not invertible. Note also

that these actions are discontinuous at measures µ with µ(∂B1) > 0.

See Section 1.11 below for a summary of the notation.
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1.2. Fractal distributions. As usual in dynamical systems theory, one may study a dy-

namical system either globally, via the invariant sets or measures of the system, or in terms

of the behavior of individual orbits. While individual orbits are often of most interest, it

is usually easier to obtain global results or results for typical orbits. Some background in

ergodic theory is provided in Section 2, see also [29, 16].

We shall similarly have two perspectives in our study of fractals: a global one, which

is concerned with distributions (on measures) which possess certain invariance properties,

and an individual one, which deals with individual measures whose “orbits” display some

regularity.

Our “global” objects are distributions on measures which exhibit certain invariance under

change of scale and translation, mirroring the idea of “self-similarity” of a measure. In this

section we describe these objects axiomatically.

Recall that a probability distribution P on M∗ is S∗ invariant if P (S∗
tA) = P (A) for

all measurable sets A and all t ∈ R. If P is an S∗-invariant distribution then P� (the

push-forward of P through µ 7→ µ� ) is an S� -invariant distributions called the restricted

version of P , and P is the extended version of P� . This is a 1-1 correspondence between

S∗- and S� -invariant distributions (see Lemma 3.1).

For a subset U ⊆ R
d and µ ∈ M(Rd) define the U -diffusion of µ by

〈µ〉U =

�
U

δT∗
x µ dµ(x)

i.e. 〈µ〉U is the distribution of the random measure ν obtained by choosing x ∈ U according

to µ and setting ν = T ∗
xµ.

Definition 1.1. A distribution P on M∗ is quasi-Palm if for every bounded, open neigh-

borhood U of the origin,

P ∼

�
〈µ〉U dP (µ)

Thus P is quasi-Palm when the following condition holds: P (A) = 0 if and only if the

random measure T ∗
xµ, obtained by selecting µ ∼ P followed by x ∼ µ, is almost surely

not in A. This definition generalizes Palm distributions, which are defined similarly, except

that one does not normalize the translated measures and one requires equality (rather than

equivalence) of the distributions when U is a symmetric convex neighborhood of the origin.

Definition 1.2. A fractal distribution1 (FD) is a probability distribution on M∗ which

is S∗-invariant and quasi-Palm. An ergodic fractal distribution (EFD) is an FD which is

ergodic with respect to S∗.

When P is an FD we shall often refer to its restricted version P� as an FD as well, even

though technically it is not; this is justified by the 1-1 correspondence between restricted

and extended versions. See section 3.1 for some remarks on the definition.

1The terminology derives from Furstenberg’s notion of an ergodic fractal measure [14], which essentially
means is a generic measure for a CP-distribution (defined below). Later we shall see that a typical measure
for an FD is, up to a translation, an ergodic fractal measure in this sense.
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This notion is closely related to the α-scale-invariant distributions of Zähle [30]. These

are Palm distributions which are invariant under a family of scaling operations depending on

the parameter α. FDs are strictly more general objects and apply in many cases where Zähle

distributions are inappropriate. The relationship between them can be described preciesly:

up to normalization ergodic Zähle distributions are those EFDs which are supported on

measures which have second order densities a.e.. See Section 3.3.

As we shall see later there is no shortage of FDs, but constructing a non-trivial one

directly requires a little work. At this point we give two trivial examples. One may, first,

take P = δλ∗ , i.e. the distribution which is concentrated on (normalized) Lebesgue measure

λ∗. Clearly λ∗ is a fixed point for both translation T ∗
x and for the scaling operators S∗

t , so

P is an EFD. Second, one can consider the distribution P = δδ0 . Since δ0 is S∗-invariant,

and 〈δ0〉U = δδ0 for every neighborhood U of the origin, P is an EFD.

As an example of an S∗-invariant distribution which is not an FD, consider the measure

η = (λ|[−∞,0))
∗ and let P = δη. Since η is an S∗-fixed point P is S∗-invariant, but for any

neighborhood U of the origin, 〈η〉U is supported on measures which a.s. give positive mass

to (0,∞) while η((0,∞)) = 0, so 〈η〉U 6∼ δη. Therefore δη is not an FD.

The ergodic components of an FD with respect to S∗ are of course S∗-invariant, but not

a-priori quasi-Palm. This is the content of:

Theorem 1.3. The ergodic components of an FD are EFDs.

We discuss this and other decompositions in Section 3.4.

1.3. Uniformly scaling measures. Next, we examine individual measures which display

dynamical regularity upon “zooming in” to typical points. This idea has a long history;

one may view the density theorems of Lebesgue and Besicovitch as early manifestations of

it, and similarly the work of D. Preiss on tangent measures. More recently the dynamical

perspective has been taken up by many authors [25, 2, 17, 3, 1, 4, 21, 23, 24, 5, 26, 11, 15, 19].

Given a measure µ ∈ M and x ∈ suppµ one may translate x to the origin, forming Txµ,

and consider the orbit of this measure under S∗, which is called the scenery of µ at x. We

are interested in measures for which for typical x the scenery equidistributes in the space

of measures, i.e. the uniform measure on the orbit up to time T converges, as T → ∞,

to some distribution. Unfortunately, the space of measures on M does not carry a good

topology.2 We therefore work in M� , which, when identified with P([−1, 1]d), is compact

and metrizable in the weak-* topology.

Definition 1.4. Let µ ∈ M and x ∈ suppµ. The parametrized family (µ�

x,t)t>0 given by

µ�

x,t = S�

t (Txµ)

2Some authors have used vague convergence, but this causes various complications, such as degenerate limit
points and “inseparability” of the topology (though it is not really a topology). We prefer to avoid these.
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is called the scenery of µ at x. The scenery distributions is obtained by placing length

measure on initial segments of the scenery:

〈µ〉x,T =
1

T

� T

0

δ
µ�

x,t

dt

Similar definitions have appeared previously in the literature. Our method of normal-

ization appears in Bandt [2, 1], Graf [17], and Gavish [15]. Other authors [30, 24, 26, 25]

have studied the normalization in which µα
x,t = eαtSt(Txµ), which is appropriate when µ

has second-order density α at x, but does not apply to many common cases, e.g. when

second-order densities do not exist. See section 3.3.

There is in general no reason the scenery distributions should converge as T → ∞. In

the case where they do we introduce the following terminology (Gavish [15]):3

Definition 1.5. Let µ ∈ M and x ∈ suppµ.

(1) If 〈µ〉x,T → P as T → ∞ we say that µ generates P at x.

(2) If µ generates a distribution Px at µ-a.e. x, we say that µ is a scaling measure (SM).

(3) If µ generates the same distribution P at a.e. point then µ is a uniformly scaling

measure (USM) and µ generates P .

There is a close relation between FDs and SMs, similar to the relation between an invariant

measure on a dynamical system and a generic point for the measure. In one direction, the

following claim is an easy consequence of the definitions and the ergodic theorem:

Theorem 1.6. If P is an FD then P -a.e. measure is a USM generating the ergodic com-

ponent of P to which µ belongs.

For the proof see Section 3.5. The converse is less trivial:

Theorem 1.7. If µ ∈ M then for µ-a.e. x, every accumulation point of 〈µ〉
�

x,T is an FD.

In particular, if µ generates P then P is an FD.

See section 5.

While it is fairly obvious4 that an accumulation point of the scenery distributions is S� -

invariant, it is remarkable that the distribution should have the additional spatial invariance

of an FD. This fact is analogous to a similar one discovered by P. Mörters and D. Preiss [24],

namely that Zähle distributions arise as the limiting distributions of sceneries of measures

with average local density α using the scaling operation Sα.

Note also that in general the distributions generated by scenery distributions of a measure

need not be S∗-ergodic.

One important property of the limiting distributions of sceneries (and more generally

their accumulation points) is that they behave nicely under linear maps, and, since they are

infinitesimal notions, under local diffeomorphisms. The following propositions follow easily

from the definitions, and we record them here for later use.

3Gavish uses the term “measures with uniformly scaling sceneries”, but we prefer the shorter name.
4Actually this is somewhat tedious to prove directly, due to the discontinuity of the action of S� .
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Proposition 1.8. If U ∈ GL(Rd) is a linear map then the induced map U∗ : M∗ → M∗

maps EFDs to EFDs.

Proposition 1.9. Let µ ∈ M be supported on an open set U and let f : U → V ⊆ R
d be a

diffeomorphism. Then for every x ∈ U , if 〈µ〉x,Ti
→ P for some sequence of times Ti, then

〈fµ〉fx,Ti
→ (Dxf)∗P . In particular if µ is a scaling measure than so is fµ.

1.4. CP-distributions. Another closely related family of “self-similar” distributions are

Furstenberg’s CP-distributions [14]. We recall the definition.

Fix an integer b ≥ 2 and let Db = Db(R) denote the partition of R into intervals of the

form [k
b ,

k+2
b ) for k = b mod 2. This partition was chosen so that it divides [−1, 1) into b

equal intervals of length 2/b each.5 For d > 1 define Db = Db(R
d) to be the partition of R

d

into cells of the form I1 × . . .× Id, Ii ∈ Db(R), so B1 is partitioned into bd cells. We denote

by Db(x) the unique element of Db containing x.

Definition 1.10. The base-b magnification operator Mb : M� × B1 → M� ×B1 is given

by

Mb(µ, x) = (TDb(x)µ, TDb(x)x)

We denote by M∗
b , M�

b the associated operators in which, after Mb is applied, ∗, � are

applied, respectively, to the measure component of the output.

Both Mb and its domain are measurable, though Mb is discontinuous at pairs (µ, x) when

µ(∂Db(x)) > 0. Starting from (µ, x), the orbit (M�

b )n(µ, x) = M�

bn(µ, x), n = 0, 1, 2, . . .

may be viewed as the scenery obtained by zooming in to x along Db-cells. We call this the

b-scenery at x. Note that this is a discrete time sequence, and the point x is generally not

in the “center of the frame” as it is for sceneries.

Definition 1.11. A distribution Q on M� × B1 is adapted if, conditioned on the first

component being ν, the second component is distributed according to ν. Equivalently, for

every f ∈ C(M� ), �
f(Txν) dQ(ν, x) =

� (�
f(Txν) dν(x)

)
dQ(ν)

Definition 1.12. A restricted base-b CP-distribution6 is an adapted probability distribution

on M� ×B1 which is invariant under M�

b

The projection of a CP-distribution to the first component is a distribution on M� , and

we sometimes refer to this distribution also as a CP-distribution.7

5It would be more natural to work with the partition of R into into b-adic intervals, i.e. intervals of the form

[ k
b
, k+1

b
), which divides [0, 1] into b subintervals. The definitions of CP-distributions and processes in [14, 19]

follow this path. This would make sense if we used [0, 1] as our “basic” interval instead of B1 = [−1, 1], but
much of our notation is adapted to B1, e.g. the maps TB and normalization operators, and because of this
it is more efficient to adopt the present definition.
6The terminology follows [14]. “CP” stands for conditional probability, hinting at the role of adaptedness
in the definition.
7Given b it is easy to see that the measure component of a base-b CP-distribution determines the original
distribution. If b is not given this may not hold: certain distributions supported on Lebesgue measure and
atomic measures are CP-distributions for several bases. It is not clear if there are any other examples. This
may be regarded as a version of Furstenberg’s ×2,×3 problem.
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To every restricted CP-distribution P there is an associated extended version on M∗×B1

which is invariant under the M∗
b and projects to Q under (µ, x) 7→ (µ� , x). This distribution

is not unique but the construction is canonical; see Section 3.2.

The relation of CP-processes and USMs was previously examined by Gavish [15], who

showed that CP-processes typically give rise to USMs. We strengthen this to show that they

give rise to FDs. Define cent0 : M∗ ×B1 → M∗ by

cent0(µ, x) = T ∗
xµ

Definition 1.13. The discrete centering of an extended base-b CP-distribution Q is the

distribution cent0Q. The continuous centering centQ is the distribution

centQ =
1

log b

� log b

0

S∗
t cent0Qdt

Theorem 1.14. The continuous centering P = centQ of a CP-distribution Q is an FD,

and the measure-preserving system (P, S∗) is a factor of the suspension of (Q,Mb) by the

function with constant height log b.

For the proof see Section 3.5. There is also a converse:

Theorem 1.15. If P is an FD and b ≥ 2 then P is the continuous centering of some base-b

CP-distribution.

See Section 5.

The CP-distribution in the theorem above is highly non-unique. We record one useful

manifestation of this:

Proposition 1.16. The CP-distribution in Theorem 1.15 may be chosen so that its second

component is distributed according to Lebesgue measure on B1.

The centering operation establishes (by definition) a measure-preserving map from a CP-

distribution to the corresponding FD, under which each measure ν of the measure component

is mapped to a translated, scaled and normalized version of ν. These operations preserve

most geometric properties of ν. This is significant because CP-distributions, while being

powerful analytic tools, are tied inflexibly to a particular coordinate system and base. For

example, the results of Furstenberg on dimension conservation [14] are for the projection of

a CP-distribution onto one of the coordinate planes. One would like to be able to change

the coordinates and base. This is made possible by the two theorems above, which allow one

to pass from a CP-distribution to an FD, the latter object being defined in a coordinate-

free way.8 Thus one can pass from a CP-distribution to the associated FD, change the

coordinate system, and pass to a new CP-distribution in a base of our choosing, and still

the new distribution has the same underlying measures as the old one. In particular, a

geometric property of measures which is unchanged by translations and scaling of measures

will hold a.s. for the old CP-distribution if and only if it holds almost surely for the new

one. We summarize this as follows:

8In fact there is a mild dependence on coordinates in FDs since B1 depends on the coordinates and is used
to define normalization, but this is insignificant. See Section 3.1.
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Corollary 1.17. For any extended FD or CP-distribution Q and for any choice of base

b and coordinate system, there is a CP-distribution Q′ in this base and coordinate system

such that, for any Borel set A ⊆ M which is invariant under translations, scaling and

normalization, we have Q(A) = Q′(A).

Finally, we note that in certain situations it is useful to generalize the notion of CP-

distributions to allow for more complicated partitions that Db. Some examples are provided

in Section 4. See also [19].

1.5. Dimension. We now turn to the geometric properties of USMs and EFDs. We recall

below some background on dimension. Falconer’s books [7], [8] are good introductions to

the topic.

Denote the Hausdorff dimension of a set A by dimA. For a measure µ ∈ M and x ∈ supµ

let

Dµ(x) = lim sup
r→0

logµ(Br(x))

log r

Dµ(x) = lim inf
r→0

logµ(Br(x))

log r

These are called, respectively, the upper and lower local dimension of µ and x. Let

dimµ = esssupDµ(x)

dimµ = essinfDµ(x)

These are the upper and lower9 dimensions of µ. If Dµ(x) = Dµ(x) we denote their common

value by Dµ(x). If Dµ(x) exists and is constant µ-a.e. its almost-sure value is the exact

dimension dimµ of µ, and we say that µ is exact dimensional.

Lemma 1.18. If P is an EFD then P -a.e. µ is exact dimensional and the dimension is

P -a.s. constant. Writing dimP for the a.s. value of the dimension, for every 0 < r < 1 we

have

dimP =

�
logµ(Br(0))

log r
dP (µ)

The fact that P -a.s. the dimension is constant follows from ergodicity of P by noticing

that the map µ 7→ dimµ is S∗-invariant.10 Existence of exact dimension is proved in Section

6.2.

If P is an FD with ergodic decomposition Pν , ν ∼ P , we define

dimP =

�
dimPν dP (ν)

Note that when P is not ergodic it is not true that P -a.e. ν has dimension dimP ; rather,

P -a.e. µ has dimension dimPν where Pν is the ergodic component of ν.

For µ ∈ M let Vx denote the accumulation points in P(M� ) of 〈µ〉x,T as T → ∞. We

have the following characterization of the local dimension of µ:

9The lower dimension may also be characterized as dim µ = inf{dim A : µ(A) > 0}.
10One may check that the map is measurable. We shall generally omit these routine verifications.
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Proposition 1.19. If µ ∈ M then for µ-a.e. x

Dµ(x) ≥ inf
P∈Vx

dimP

and

Dµ(x) ≤ sup
P∈Vx

dimP

In particular, if µ is a USM generating an EFD P then µ is exact dimensional and dimµ =

dimP .

The last conclusion fails if P is not ergodic. See Section 6.2.

1.6. Projections of measures. One of the fundamental facts in fractal geometry is that

if one projects a set or measure through a typical linear map π : R
d → R

k (or pushes it

through a typical C1 map) then the image measure has dimension which is “as large as it

can be”. This result has many variants but is often referred to generally as Marstrand’s

theorem. More precisely, let Πd,k denote11 the space of linear maps R
d → R

k. Note that

Πd,k is a smooth manifold and carries a natural measure class. Marstrand’s theorem for

measures is:

Theorem 1.20 (Hunt-Kaloshin, [20]). If µ is an exact-dimensional finite measure on R
d,

then for a.e. π ∈ Πd,k, the image measure πµ is exact dimensional and

dimπµ = min{k, dimµ}

This general statement has two shortcomings. First, it is an almost-everywhere statement,

and gives no information about πµ for particular π ∈ Πd,k. Second, in general the map

Eµ : Πd,k → R given by

Eµ(π) = dim πµ

if Borel, but does not have any regularity.

In the context of CP-distributions, however, Hochman and Shmerkin [19] recently proved

that some regularity exists. To state this, we note first that for µ ∈ M the projection πµ

may not be Radon, so we define12

dim πµ = lim
R→∞

(dimµ|BR
)

and similarly for dim and dim. Next, if P is a distribution on M, write

EP (µ) =

�
dimπµ dP (µ)

If P is S∗-ergodic then the map µ 7→ dimπµ is S∗-invariant and hence constant, so the

integral in the definitions of EP (µ) trivializes and EP (µ) is just the almost-sure value of

dimπµ.

Theorem 1.21 (Hochman-Shmerkin [19], Theorem 1.10). Let P be an ergodic CP-distribution.

11We shall mostly be interested in the elements of Πd,k only up to change of coordinates in the range. Some

authors identify Πd,k modulo this relation with the space of orthogonal projections from Rd to k-dimensional
subspaces.
12Although it would be more precise to write dim(π, µ) and not dim πµ, no confusion should arise.
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(1) EP (·) is lower semi-continuous and equal almost everywhere to min{k, dimP}.

(2) For P -a.e. µ and every regular f ∈ C1(Rd,Rk),

dimϕµ ≥ essinfx∼µEP (Dϕ(x))

In particular, dimπµ ≥ EP (π) for π ∈ Πd,k.

In view of Theorem 1.15, this transfers immediately to EFDs. We can also improve it

in several ways. First, Furstenberg [14] showed that if Q is a CP-distribution and π is the

projection to a coordinate plane, i.e. π(x) = (xi1 , . . . , xik
) for some indices 1 ≤ i1 < . . . <

ik ≤ d, then πµ is exact dimensional for Q-a.e. µ. Using Corollary 1.17, we have

Theorem 1.22. If P is a CP-distribution or an FD then for every π ∈ Πd,k, for P -a.e. µ

the image πµ is exact dimensional.

The last two theorems are still a.e results, the uncertainty being about the measure

rather than the projection. Instead, one would like to obtain information about individual

measures. For example, if Q is a CP-distribution, is it true for Q-a.e. µ that πµ is exact

dimensional and Eµ = EQ? Since a typical measure for an FD is a USM, one approach to

these questions is to explore the validity of the results above for USMs and, more generally,

SMs.

In this spirit, one can get lower bounds for projections of scaling measures. For an µ ∈ M

let Vx again denote the accumulation points of 〈µ〉x,T as T → ∞, and let

(1.1) Ex(·) = inf
P∈Vx

EP (·)

Theorem 1.23. Let µ ∈ M. Then for regular f ∈ C1(Rd,Rk),

dim fµ ≥ essinfx∼µEx(Df(x))

In particular, if µ is a USM generating an EFD P , then for all π ∈ Πd,k,

dimπµ ≥ EP (π)

See Section 6.3. However, one cannot hope for equality or exact dimension:

Proposition 1.24. Let µ be a USM generating an EFD P and π ∈ Πd,k. Then it is possible

that πµ is not exact dimensional and that dimπµ > EP (π).

We give such examples in Section 6.4. As a consequence, since USMs are exact dimen-

sional we have:

Corollary 1.25. The projection of a USM need not be a USM.

We have not been able to settle the following:

Problem 1.26. If P is an EFD on R
d, is it true that for P -a.e µ, for every π ∈ Πd,k the

image πµ is exact dimensional with dimπµ = EP (π)?
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1.7. Conditional measures on subspaces. Another classical question, which is in some

sense dual to the problem of understanding projections, is to understand the conditional

measures of µ on the fibers of a projection. More precisely, given a measure µ on R
d and a

map f : R
d → R

k, define for x ∈ R
d the f -fiber through x by

[x]f = f−1(f(x))

and the corresponding partition into fibers,

Fπ = {f−1(y) : y ∈ R
k}

= {[x]f : x ∈ R
d}

We write µ[x]f for the conditional measure on [x]f , which is defined µ-a.e. (note that when

f is not finite these fiber measures are well defined only up to a multiplicative constant).

The classical result about fibers is the following:

Theorem 1.27 (Matilla [22]). If µ is an exact-dimensional measure on R
d then, for a.e.

π ∈ Πd,k and µ-a.e. x ∈ R
d, the measure µ[x]π is exact dimensional and

(1.2) dimµ[x]π = max{0, dimµ− k}

and in particular for a.e. π ∈ Πd,k,

(1.3) dimπµ+ dimµ[x]π = dimµ for µ-a.e. x

The last equation is a “dimension conservation” phenomenon: for an exact-dimensional

measure µ and a.e. projection π ∈ Πd,k, the sum of dimensions of the image πµ and a

typical fiber µ[x]π is precisely dimµ.

We now turn to the behavior of FDs under conditioning, which is discussed in Section 1.7.

Let us first make some remarks about the global picture. Although the conditional measures

of µ with respect to π are defined only for µ-a.e. fiber, if P is a d-dimensional EFD and

π ∈ Πd,k then, due to the quasi-Palm property, the conditional measure of a P -typical µ on

the fiber π−1(0) is well defined. The fiber can be identified with R
d−k, and one may verify

without difficulty that the map µ 7→ (µπ−1(0))
∗ intertwines S∗ and that the image Q of P

by this map is a k-dimensional EFD. In particular,

Proposition 1.28. If P is a d-dimensional EFD and π ∈ Πd,k then for P -a.e. µ the

conditional measures of µ[x]π are exact-dimensional and the dimension is a.s. independent

of µ and x.

In [14], Furstenberg established a version of Theorem 1.27 in which the measure is a typical

measures for CP-processes, but for concrete (rather than generic) projections, namely the

coordinate projections : π(x) = (xi1 , . . . , xik
) for some indices 1 ≤ i1 < . . . < ik ≤ d.

Theorem 1.29 (Furstenberg [14]). If P is an ergodic CP-distribution and π is a coordinate

projection, then for P -a.e. µ,

dimπµ+ dimµ[x]π = dimµ for µ-a.e. x
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To this we apply the fact that an FD can be represented as a CP process in any coordinate

system, at the cost of changing P on a measure zero set (Corollary 1.17). We obtain exact

dimension of fiber measures and dimension conservation for typical measures and arbitrary

projections:

Theorem 1.30. Let P be an EFD and π ∈ Πd,k. Then for P -a.e. µ and µ-a.e. x, the fiber

measure µ[x]π is exact dimensional, and

(1.4) dimπµ+ dimµ[x]π = dimµ for µ-a.e. x

Turning to USMs, we have a dual version of 1.23, giving an upper bound on the dimension

of fibers:

Theorem 1.31. If µ ∈ M and Ex is defined as in equation (1.1), then for every regular

f ∈ C1(Rd,Rk),

dimµ[x]f ≤ esssupx∼µ(dimµ− Ex(Df(x))) for µ-a.e.x

In particular, if µ is a USM generating an EFD P and π ∈ Πd,k then ,

dimµ[x]f ≤ dimP − EP (π)) for µ-a.e.x

In light of the fact that there can be a strict inequality in Theorem 1.23 (and also as

is evident from the construction in that proof), dimension conservation can fail for USMs.

Furthermore, it can fail in a rather dramatic fashion:

Proposition 1.32. There exists a USM µ on R
2 generating an EFD P , and such that

dim(µ) > 1 for P -a.e. µ the projection π(x, y) = x is an injection.

We are left the dual version of Problem 1.26:

Problem 1.33. If P is a USM on R
d is it true that for P -a.e µ, for every π ∈ Πd,k a.e.

fiber µπ−1(y) is exact dimensional with dimµπ−1(y) = dimµ− EP (π)?

Finally, the same construction as in Proposition 1.32 provides a counterexample to an-

other question of Furstenberg. Following [14], for a compact set X ⊆ R
d define a microset

to be a set of the form B1 ∩ TEX , where E is a ball, and define a microset to be a limit of

minisets, with respect to the Hausdorff metric on the space of closed subsets of B1. The set

X is homogeneous if every microset is a subset of some miniset. For such sets Furstenberg

constructed a CP-process on X of the same dimension as X , and used this to show that, for

linear projections, a dimension conservation similar to [14] holds for X . He also asked [13]

whether this holds for smooth maps. The answer is negative:

Proposition 1.34. There exists a homogeneous set X ⊆ R
2 and a C∞ map f : R

2 → R

which is injective on X (so each fiber is a singleton) and such that dim fX < dimX.

1.8. FDs with additional invariance. For FDs which enjoy certain additional invariance

properties one can draw stronger conclusions than the above. We briefly mention these

applications now, and present them in more detail in Section 7.
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Our first example uses the notion of a homogeneous measure, which is a modification of

a similar notion of Gavish [15].13

Definition 1.35. A point x is homogeneous for a measure µ ∈ M if for every accumulation

point ν of (µ�

x,t)t>0 there is a ball B with µ ≪ TBν. A measure µ is homogeneous if µ-a.e.

point is homogeneous for µ.

Examples of homogeneous measures include self-similar measures for iterated function

with strong separation whose contractions are homotheties or, more generally, if the linear

part orthogonal of contractions generate a finite group (see Section 4).

Proposition 1.36. If µ is a homogeneous measure then it is a USM and generates an EFD

P supported on homogeneous measures.

With these facts in hand it is not hard to use our results from the previous sections to

deduce:

Theorem 1.37. If µ is a homogeneous measure then Eµ(·) is lower semi-continuous; for

every π ∈ Πd,k the image πµ and a.e. conditional fiber measure is exact dimensional, and

furthermore a.e. fiber measure is a USM; and µ satisfies dimension conservation for every

π ∈ Πd,k.

We next consider EFDs with additional geometric invariance. For any k there is an action

of GL(Rd) on Πd,k given by U : π → π ◦U−1, and a GL(Rk)-action given by V : π → V ◦π.

These actions commute, giving a GL(Rk) ×GL(Rd)-action.

Let A ⊆ GL(Rd) be a group of linear transformations. A induces an action on measures

and hence an action A∗ on distributions. An EFD P is non-singular with respect to A if

a∗P ∼ P for every a ∈ A.

As a consequence of the semi-continuity of EP (·), we obtain the following:

Proposition 1.38. Let P be an EFD which is non-singular with respect to a group A ⊆

GLn(Rd). Then EP (·) is constant on A-orbits of Πd,k. In particular if an orbit Λ ⊆ Πd,k

of GL(R)k ×A has non-empty interior then EP |Λ = min{k, dimα}.

This allows us to recover the main results from [19] (see Theorems 7.1 and 7.2 below).

1.9. Open problems. Let us mention some problems which we have been so far unable to

resolve.

(1) Is it true that if P is an FD then P -a.e. µ has exact dimensional projections for

every π ∈ Πd,k? Exact dimensional conditionals? dimension conservation?

(2) What are the limits of scenery distributions of self-affine measures and how do they

relate to the structure of the measure?

13Gavish’s definition is flawed in a number of ways. Most measures of interest are not homogeneous in his
sense; it is simple, for example, to show that any measure on a cantor set in the line has atomic micromeasures
and hence if the original measure is non-atomic it cannot be homogeneous in Gavish’s sense. Our definition
seems to capture better Gavish’s intention.
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(3) What class of EFDs has absolutely continuous projections? We note that the semi-

continuity result for dimension of projections does not have an analogue for absolute

continuity, as is evident from [26]. However there are various special measures for

which absolute continuity has been verified. It seems possible that some mixing

assumption, perhaps quantitative, on the FD might yield similar results (perhaps

what is required is some form of temporal or spatial mixing, or both).

(4) More generally, what dynamical properties of an EFD as a measure preserving sys-

tem have implications for the geometry of the fractal? For one result of this type

see [18].

1.10. Acknowledgments. This project evolved in tandem with my work with Pablo Shmerkin

on [19], and I’d like to thank Pablo for many interesting discussions and references. I am

also indebted to Hillel Furstenberg and Matan Gavish for sharing with me their ideas about

CP-processes and USMs.

1.11. Summary of notation

.

d Dimension of the ambient Euclidean space.

Br(x) , Br The closed ball of radius r around x (if not specified, x = 0).

M , M(Rd) Space of Radon measure on R
d.

P(X) Space of probability measures on X .

µ, ν, η, θ Measures (elements of M).

P,Q,R Distributions (elements of P(M)).

U ,V ,W Subsets of large spaces, e.g.M or P(M).

µ∗ µ normalized to mass 1 on [−1, 1]d.

µ� µ restricted and normalized to mass 1 on [−1, 1]d.

µA Conditional measure of µ on A.

Tx , T ∗
x , T�

x Tx(y) = y − x, and normalized variants.

St , S∗
t , S�

t St(x) = etx, and normalized variants.

Db,Db(x) Partition into b-adic cells and the cell containing x.

Mb , M∗
b , M�

b Base-b magnification operator, normalized variants.

µx,t Scenery of µ at x at scale T .

〈µ〉x,T , 〈µ, x〉T Continuous and b-scenery distributions at x and scale T .

Πd,k Space of linear maps R
d → R

k

Dµ(x) , Dµ(x) Lower and upper local dimension of µ at x.

dim , dim , dim Lower, upper and exact dimension of a measure.

2. Ergodic-theoretic preliminaries

Our perspective in this work if ergodic-theoretic, although we will not require very much

beyond the basic definitions and the ergodic theorem. Most relevant material is summarized

here. For more information see [29, 16].

2.1. Measure preserving systems. A measure preserving system is quadruple (Ω,B, P, S),

where (Ω,B, P ) is a standard probability space and S is a semigroup or group acting on Ω

by measure-preserving transformations: if sω denotes the action of s ∈ S on ω ∈ Ω, then
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s : Ω → Ω is measurable and P (s−1A) = P (A) for every A ∈ B and s ∈ S. We usually drop

B in our notation, and sometimes abbreviate the system to (P, S).

We will only encounter the cases S = Z or Z
+, which we call discrete time systems, and

S = R or R
+, which we call continuous time systems, or flows. In the discrete time case one

often writes the system as (Ω,B, P, s) where s is a generator of S.

2.2. Ergodicity and ergodic decomposition. A measure preserving system is ergodic if

the only invariant sets are trivial, i.e. if

(
∀s ∈ S P (s−1A∆A) = 0

)
=⇒ (P (A) = 0 or 1)

The ergodic decomposition theorem asserts that for any measure preserving system (Ω,B, P, S)

there is a map Ω → P(Ω), denoted ω 7→ Pω , which is (i) measurable with respect to the

sub-σ-algebra I ⊆ B of S-invariant sets, (ii) P =
�
PωdP (ω), (iii) P -a.e. Pω is invariant

and ergodic for S and supported on the atom of I containing ω. Both Pω and the atom

containing ω are called the ergodic components of ω. The map ω → Pω is unique up to

changes on a set of P -measure zero.

2.3. Time-1 maps and suspensions. Given a continuous time system (Ω,B, P, S) and

s0 ∈ S one can consider the discrete-time systems (Ω,B, P, s0) in which the action is by the

semigroup (or group if s0 is invertible) generated by s0. This system need not be ergodic

even if the S-system is.

Conversely there is a standard construction to go from a discrete-time system to a

continuous-time one. Given a measure-preserving transformation s of (Ω,B, P ), consider

the product system Ω × [0, c] with measure P × λ[0,c), where λ[0,c) is normalized Lebesgue

measure on [0, c), and for t ∈ R
+ define st(x, r) = (s[t/c]x, c{ 1

c (r + t)}), where [u], {u}

denote the integer and fractional parts of u. Then S = (st)t∈R is a measure-preserving flow

called the c-suspension of (Ω,B, P, s). Note that under sc the flow decomposes into ergodic

components of the form P × δu, u ∈ [0, c) and the action of sc on each ergodic component

is by applying s to the first coordinate and fixing the second.

A more general construction is the flow under a function construction. Given a discrete

time system (Ω,B, P, s) and a positive measurable function f : Ω → R
+. Let Ω′ ⊆ Ω × R

+

denote the set

Ω′ = {(ω, r) : 0 ≤ r < f(ω)} ⊆ Ω × R

and on it put the probability measure P ′ = (P × λ)Ω′ (this requires
�
f dP < ∞ in order

that P ×λ(Ω′) <∞). Define a flow on this set by flowing vertically “up” from (ω, r) at unit

speed until the second coordinate reaches f(ω), then jumping to (sω, 0) and continuing to

flow up. Formally, one considers Ω′ to be a factor space of Ω×R by the equivalence relation

∼ generated by (ω, r) ∼ (sω, r− f(ω)). Define a flow on Ω×R by st(ω, r) = (ω, t+ r). This

flow factors to the desired P ′-preserving flow on Ω′. Note that the c-suspension is just a

flow under the function f ≡ c.

2.4. Isomorphism, factors, natural extensions and processes. If (Ω,B), (Ω′, B′) are

measurable spaces and S is a semigroup acting measurably on both then a factor map
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π : Ω → Ω is a measurable map which intertwines the actions, i.e.

s ◦ π = π ◦ s for all s ∈ S

When the actions preserve measures P, P ′ respectively the factor map is also required to

preserve measure, i.e. P (π−1A) = P ′(A) for all A ∈ B′.

If (Ω,B, P, S) is a system with S = Z
+ or R

+, the natural extension of the system is the Z

or R system, respectively, obtained as follows. Let S denote the (abstract) group generated

by S and take

Ω = (ω ∈ ΩS : ωt+s = sωt for all t ∈ S and s ∈ S}

Let S act on Ω by translation: (sω)t = ωs+t. Then π : ω 7→ ω0 is a factor map from

Ω with the translation action and (Ω, S), and there is a unique invariant measure P on

Ω which projects to P . The system (Ω, P, S) is the natural extension of (Ω, P, S) and is

characterized up to isomorphism by the property that if (Ω′, P ′, S) is another S-system

and π′ : (Ω′, S) → (Ω, S) is a factor map (with respect to S) then there is a factor map

ϕ : (Ω′, S) = (Ω, S) such that π′ = πϕ.

It will sometimes be useful to identify a dynamical system with a process. Given (Ω,B, P, S)

we define the Ω-valued random variables (Xs)s∈S on (Ω,B, P ) by Xs(ω) = sω. The fam-

ily (Xs)s∈S is a stationary process in the sense that the joint distribution of any k-tuple

(Xsi
)k
i=1 is the same as the joint distribution of (Xsi+t)

k
i=1 for every t ∈ S.

2.5. The ergodic theorem. If (Ω,B, P, (St)t∈R+) is a semi-flow let I ⊆ B be the σ-algebra

of S-invariant sets. Then for f ∈ L1(Ω, P ),

lim
T→∞

1

T

� T

0

f ◦ St dt = E(f | I)

P -a.e. and in L1. In particular for ergodic system I is the trivial σ-algebra consisting of

sets of measure 0 and 1, and the right hand side is then
�
f dP . For discrete time systems

the same result holds with the integral is replaced by a sum from 1 to T .

2.6. Generic points in topological systems. Let S : X → X be a continuous transfor-

mation of a compact metric space and let P be a Borel probability measure X . A point

x ∈ X is generic for P if

(2.1) PN =
1

N

N−1∑

n=0

δSnx → P

in the weak-* topology; that is, for every f ∈ C(X),

(2.2)

�
f dPN =

1

N

N−1∑

n=1

f(Snx) →

�
fdP

If P is as S-invariant distribution then P -a.e. x is generic for P . Indeed, in order for

x ∈ X to be generic for P it is enough that (2.2) hold for f in some fixed dense countable

family F ⊆ C(X). Such a family exists because X is compact and metric. For f ∈ F and

for P -a.e. x, (2.2) holds by the ergodic theorem.
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Conversely, if x is generic for P then P is S invariant, and, more generally any accumu-

lation point P of the averages (2.1) is S-invariant. Indeed, invariance is equivalent to the

equality
�
f ◦ S dP =

�
f dP for every f ∈ C(X). Since Sδy = δSy, for f ∈ C(X) we have�

f ◦ S dP −

�
f dP =

�
(f ◦ S) d( lim

N→∞

1

N

N−1∑

n=0

δSnx) −

�
f d( lim

N→∞

1

N

N−1∑

n=0

δSnx)

= lim
N→∞

1

N

(
N∑

n=1

f(S(δSnx)) −
N∑

n=1

f(δSnx)

)

= lim
N→∞

1

N

(
N∑

n=1

f(δSn+1x)) −
N∑

n=1

f(δSnx)

)

= lim
N→∞

(
1

N
f(δSn+1x) −

1

N
f(δx)

)

= 0

Note that we used continuity of S to deduce that f ◦ S ∈ C(X), which was used in passing

from the first to the second line.

Generic points for a continuous time action of R on X are defined similarly.

3. Basic properties of the models

This section contains some remarks on the definition of FDs and their relation to other

models, and derivation of their some of their basic properties.

3.1. Remarks on normalization. If µ ∈ M then, unless there is an atom at the origin,

Stµ → 0 as t → ∞. Therefore some form of normalization is necessary if we wish to study

the dynamics of rescaling. However, outside of some special cases (e.g. when there are

second order densities, see Section 3.3) there is no natural way to do this.

The most mathematically straightforward approach is to bypass the issue of normalization

altogether and work in the projective space M/R+, in which one identifies measures which

are constant multiples of each other, or, better yet, the factor space in which equivalent

measures are identified. However, this is somewhat inconvenient in practice.

Our choice of normalization, µ 7→ µ∗, amounts to choosing a section over M/R+. We

could of course choose to normalize some other neighborhood of the origin U using the

normalization µU = 1
µ(U)µ, and associated operations. Although we stated in the introduc-

tion that FDs are defined in a coordinate-free way, our choice of B1 as the set on which

measures are normalized is coordinate dependent. However, if we use µU instead then the

extended FDs with respect to U are in 1-1 correspondence with extended FDs as we have

defined them since the maps µ→ µU and ν 7→ ν∗ are inverses of each other on MU and M∗

and induce a bijection of distributions on these sets which intertwine the respective scaling

groups. Also, the normalization does not change the measure class of the measure and so

modulo equivalence of measures, the choice of U is inconsequential.

Let us mention one more possibility for normalization. One can show that for every FD

P there is a continuous positive function f : R
d → R

+ such that
�
fdµ < ∞ for P -a.e. µ
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(in fact any f with sufficiently fast decay is as x→ ∞ has this property). Let µf = 1�
fdµ

µ.

Then P f , the push-forward of P under µ 7→ µf , is invariant under the appropriate scaling

group Sf = (Sf
t )t∈R, and P f satisfies an analogous quasi-Palm property. Furthermore,

suppP f is weakly compact in P(M), and Sf acts on it continuously, two properties which

are annoyingly absent in our normalization. However, this normalization is less convenient

in applications, and we shall not have use for it.

3.2. Restricted and extended versions. The following claim holds generally for S∗-

invariant distributions, not only for FDs.

Lemma 3.1. The map M → M� , µ 7→ µ� intertwines the R
+-actions of S∗ and S� ,

i.e. (S∗
t µ)� = S�

t µ for t ≥ 0, and induces a one-to-one correspondence P 7→ P� between

S∗-invariant distributions on M and S� -invariant distributions on P.

Proof. The first claim is immediate.

Suppose that Q is an S� -invariant distribution; we construct a S∗-invariant distribution

Q̃ with Q̃� = Q, showing that restriction is surjective. Let (µt)t∈R be the unique stationary

process with µ0 ∼ Q and

(3.1) µt+s = S�

s µt

for all t ∈ R and s ≥ 0. For each t ≥ 0 define

νt = S∗
t µ−t

Note that (3.1) implies that for t ≥ s ≥ 0,

(3.2) νt|Bes (0) = νs

Therefore we can define

ν = lim
t→∞

νt

i.e. ν(A) = limt→∞ νt(A).

Let Q̃ be the distribution of ν. Clearly ν� = µ0, so Q̃� = Q. The property 3.2 ensures

that Q̃ is S∗ invariant.

Finally, note that if R is any other S∗-invariant distribution with R� = Q then by pushing

R through the map τ 7→ τ |Bet (0) for t ≥ 0 we obtain the distributions of νt. It follows that

R = Q̃, establishing injectivity of the restriction map µ 7→ µ� . �

Next, for a restricted CP-distribution Q we construct the extended version Q̃. This is

an M∗
b -invariant distribution Q̃ on M∗ ×B1 whose push-forward via (µ, x) 7→ (µ� , x) is Q,

but note that these two properties of Q do not characterize it as in the case of the extended

version of an FD. An example is given below.

The construction is analogous to the construction of extended FDs. Let (µn, xn)n∈Z the

unique stationary process with marginal Q and such that

(µn+1, xn+1) = M�

b (µn, xn)
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For n ≥ 0 let

νn = T ∗
Dbn(x−n)µ−n

and

En = TDbn(x−n)B1

then νn is supported on En and B1 = E0 ⊆ E1 ⊆ E2 ⊆ . . .. For n ≥ m ≥ 0 we have

(M�

b )m(µ−n, x−n) = (µ−n+m, x−n+m)

so

νn|Em
= νm

and we may define

ν = lim
n→∞

νn

i.e. ν(A) = limn→∞ νn(A). This measure is easily seen to be Radon. The distribution Q̃

of ν is a distribution on M∗ × B1 and it is M∗
b -invariant. This is the extended version of

Q. One may verify that the map (µ, x) 7→ (µ� , x) is a factor map between the measure

preserving systems (M∗ ×B1, Q̃,M
∗
b ) and (M� ×B1, Q,M

�

b ).

As we remarked above, if Q is a restricted CP-distribution and R is a distribution on

M∗×B1 which is (i) invariant under the mapM∗
b and (ii) factors onto Q̃ via (µ, x) 7→ (µ� , x),

it does not follow that R = Q̃. Indeed, consider the measure µ on R
2 consisting of Lebesgue

measure on the vertical line x = 1, and 2−n times Lebesgue measure on the vertical line

x = 1 + 2−n, n ∈ N. Let I = {1} × [−1, 1]. Then the distribution R =
�

I
δ(µ,x) dµ(x) is

adapted and invariant under M∗
2 , and factors onto the CP-distribution Q, but R is not the

extended version of Q. Rather, the extended version is Q̃ =
�

I
δ(ν,x) dν(x), where ν consists

of Lebesgue measure on the line x = 1.

The example above is rather special and also typical of what can go wrong:

Lemma 3.2. Let Q be a restricted ergodic CP-distribution and suppose that
�
θ(B1) dQ(θ, x) <

1. Then there is a unique CP-distribution Q̃ factoring onto Q via (µ, x) 7→ (µ� , x).

We do not use this, and omit the proof.

3.3. Relation to Zähle distributions. A class of models closely related to FDs are Zähle’s

notion of an α-scale-invariant distribution, see [30, 24]. For fixed α > 0, Zähle’s notion of

scale invariance uses the additive R-action Sα = (Sα
t )t∈R on M, defined by

Sα
t µ = eαtStµ

An α-Zähle distribution is an Sα-invariant distribution P which in addition is a Palm dis-

tribution, i.e. �
B

δTxµ dµ(x) = P

for every ball B centered at the origin. Note that the left hand side differs from 〈µ〉B because

we have not normalized the translated measure Txµ, and besides this the condition differs

from the definition of quasi-Palm in that we require equality rather than equivalence of the

distributions. We write Zα for the space of ergodic α-Zähle distributions.
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Define the α-scenery of µ at x to be

µα
x,t = Sα

t Txµ

and the scenery distribution

〈µ〉αx,T =
1

T

� T

0

δµα
x,t
dt

which is a distribution on P(M). In this space of distributions we consider weak convergence,

i.e. Pn → P if
�
f dPn →

�
f dP for every bounded continuous f : M → R. Note that

the weak topology is not compact, and it is entirely possible for µα
x,t become unbounded as

t→ ∞. It can also accumulate on the zero measure. Thus the α-scenery distributions may

not have convergent subsequences, or may converge to the distribution on δ0.

Mörters and Preiss proved the following predecessor of Theorem 1.7:

Theorem 3.3. [Mörters and Preiss, [24]] If µ ∈ M and α > 0 then for µ-a.e. x, every

weak-* accumulation point of the α-scenery at x is an α-Zähle distribution.

Let us now make the analogy between EFDs and Zähle distributions precise. It is clear

that if P ∈ Zα then P ∗ is an FD and µ 7→ µ∗ is a factor map between (P, Sα) and

(P ∗, S∗). This correspondence is clearly many-to-one for the following reason. Let us say

that distributions P,Q are equivalent up to a constant if there is a c > 0 such that Q is

the push-forward of P through the map µ 7→ cµ. We denote this relation ≈. Note that if

P ∈ Zα and Q ≈ P then Q ∈ Zα, and also P ∗ = Q∗. Therefore the map P 7→ P ∗ from Zα

to the space of EFDs is not injective: its fibers are saturated with respect to the ≈ relation.

For a µ ∈ M and x ∈ suppµ, the α-dimensional second-order density of µ at x is

Dα(µ, x) = lim
t→∞

1

T

� T

0

eαtµ(Bt(x))dt

assuming the limit exists. Denote

Aα ∈ {µ ∈ M : µ has α-dimensional second order densities a.e.}

Note that Dα(µ, x) is homogeneous in µ, that is, Dα(cµ, x) = cDα(µ, x) for c ∈ R. Therefore

Aα is saturated with respect to ≈.

Theorem 3.4. For each α > 0 the map Q 7→ Q∗ is a bijection between Zα/ ≈ and the space

of EFDs which are supported on Aα.

Proof. Let P ∈ Zα. Note that Dα(µ, 0) is an ergodic average with respect to Sα of the

function f(µ) = µ(B1), so for P -a.e. µ the second-order density at the origin exists and by

ergodicity is P -a.e. equal to c′ =
�
fdP . Since P is Palm, for P -typical µ and µ-typical x

the α-dimensional second order density exists at x and Dα(µ, x) = c′.

Since µ∗ = 1
µ(B1)µ, it follows that at µ∗-a.e. point the α-dimensional second order

densities exist and are equal to c′

µ(B1) . This shows that the map P 7→ P ∗ maps elements of

Zα to EFDs supported on Aα.

Let Q be an extended EFD supported on Aα. For Q-typical µ it then follows by Theorem

3.3 that the distribution Qx which is the weak limit of the α-sceneries of µ at x belongs to
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Zα. However, it is simple to verify that

Q�

x = lim
T→∞

(〈µ〉αx,T )� = lim
T→∞

〈µ〉x,T = Q�

which implies that Q∗
x = Q. Hence the map P 7→ P ∗ maps Zα surjectively to the set of

EFDs supported on Aα.

Finally, to establish that the map is bijective modulo ≈, suppose that Q is an EFD

supported on Aα. For P ∗-typical µ let c(µ) = Dα(µ, x). We claim that this is well defined,

i.e. that the right hand side is µ-a.s. independent of x. Indeed, we already saw in the

first paragraph of the proof that this is the case if Q = P ∗ for some P ∈ Zα, and in the

previous paragraph we saw that such P exists. Next, define µ∗ = 1
c(µ)µ. For P ∈ Zα with

P ∗ = Q the discussion in the first paragraph of the proof shows that for P -typical ν we have

(ν∗)∗ = 1
c′ ν, where c′ is the a.s. α-dimensional second order density of P -typical measures.

Hence µ 7→ µ∗ is an inverse, modulo ≈, to the map P 7→ P ∗. �

As a consequence of this characterization, we find that EFDs are a far broader model

than Zähle distributions:

Corollary 3.5. There exist EFDs which do not arise from a Zähle distribution.

Proof. Any EFD supported on measures which a.s. do not have positive second order

densities is such an example. To be concrete, we may take the EFD associated to any self-

similar measure arising from similarities satisfying strong separation, and which is singular

with respect to Hausdorff measure at the appropriate dimension. See Section 4. The fact

that such a measure does not have second order densities follows from Patzschke and Zähle

[25], and that this is true for the corresponding EFD follows from the fact that at a.e. point

of a self similar measure the accumulation points of scenery all contain an affine copy of the

original measure.

For a more concrete example consider the measure µ on [0, 1] which is the distribution

of the random number x whose binary digits are chosen independently to be 0 with prob-

ability 0 < p < 1
2 and 1 with probability 1 − p. The associated EFD is again not a Zähle

distributions, for the same reason. �

Finally, we remark that FDs do not necessarily have finite intensity; that is, if P is an

FD then there may be compact K ⊆ R
d with

�
ν(K) dP (ν) = ∞. This phenomenon does

not occur for Zähle distributions.

3.4. Ergodic and spatial decompositions. Next, we prove the ergodic decomposition

theorem for FDs. We require the following geometric tool:

Lemma 3.6 (Besicovitch). If µ is a Radon measure on R
d and µ(A) > 0 then for µ-a.e.

point in A,

lim
r→0

µ(A ∩Br(x))

µ(Br(x))
= 1

Proof. See [22, Corollary 2.14]. �

We can now prove the ergodic decomposition theorem for EFDs:
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Proof of Theorem 1.3. Let P be a FD and let U ⊆ M∗ be an S∗-invariant measurable set

with P (U) > 0. We claim that for P -a.e. µ ∈ U and µ-a.e. point x we have T ∗
xµ ∈ U . Let

f(µ) = µ({x ∈ B1 : T ∗
xµ ∈ U})

For µ ∈ M and µ-a.e. x, Besicovitch’s lemma implies that

lim
t→∞

f(µ∗
x,t) ∈ {0, 1}

Hence by the quasi-Palm property, it follows that limt→∞ f(S∗
t µ) ∈ {0, 1} for P -a.e. µ.

Hence by S∗ invariance, f(µ) ∈ {0, 1} for P -a.e. µ, and from S∗-invariance again, for P -a.e.

µ if f(µ) = 1 then T ∗
xµ ∈ U for µ-a.e. x (not only for x ∈ B1), and if f(µ) = 0 then T ∗

xµ /∈ U

for µ-a.e. x. It is clear that up to P -null sets {f = 1} ⊆ U and {f = 0} ⊆ M∗ \ U and

therefore these containments are equalities P -a.e.

From this discussion it is clear that�
U

〈µ〉∗B1
dP (µ) ≪ P |U

and we have a similar relation using U ′ = M∗ \ U instead of U . From the fact that�
〈µ〉∗B1

(µ) dP (µ) ∼ P

and P = P |U + P |U ′ we conclude that in fact

(3.3)

�
U

〈µ〉∗B1
µdP (µ) ∼ P |U

so PU is an FD. Furthermore, we see that the Radon-Nikodym derivative of the left hand

side with respect to the right in (3.3) is the same as the restriction to U of the derivative

of
�
〈µ〉∗B1

dP with respect to P . It now follows (e.g. using the martingale theorem) that

the conditional distributions of P on the σ-algebra of S∗-invariant sets satisfy a similar non-

singularity relation and therefore consist a.s. of FDs. Since these are precisely the ergodic

components, we are done. �

It is natural to ask whether an “ergodic decomposition” exists for scaling measures on

the spatial level. Two simple results of this type are the following.

Proposition 3.7. If µ is a scaling measure, and µ(A) > 0, then µA is a scaling measure

and µ and µA generate the same distribution at µA-a.e. x.

Proof. This is immediate from the Besicovitch density theorem (Lemma 3.6), which implies

that for µA-a.e. x,

S�

t Tx(µA) − S�

t Txµ→ 0

and hence the sceneries at x for µ and µA are asymptotic. �

More generally,

Proposition 3.8. If µ is a scaling measure and ∅ 6= ν ≪ µ then ν is a scaling measure and

for ν-a.e. x the distributions generated by µ and ν at x are the same.

The proof is the similar using the Besicovitch density theorem for functions.
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One consequence is that if U is a set of distributions and A, B = R
d \A is the partition of

R
d according to whether Px ∈ U or Px /∈ U , respectively, then the conditional measures on

the atoms of the partition behave as described above: µA-a.e. point generates a distribution

in U and µB-a.e. point generates a distribution in M∗ \ U . It is now natural to ask if

this phenomenon continues down to the partition according to the generated distributions.

More precisely, fix a scaling measure µ and consider the partition of R
d induced by the map

x 7→ Px , where Px is the distribution generated at x. We may disintegrate µ with respect

to this partition, and one might expect that the induced measure on the atom {x : Px = P}

will itself be a USM generating for P .

In general this is false. Consider the following example. Let µ be any USM, e.g. Hausdorff

measure on the product C × C ⊆ [0, 1]2 of the usual middle- 1
3 Cantor set (see Section 4 for

a discussion of examples). Let P denote the FD which is generated at µ-a.e. point, and

note that P is supported on measures which locally are homothetic copies of C × C, hence

UP = P for a linear map U if and only if U is a rotation by an integer multiple of 90◦ or a

reflection about one of the axes. Now consider (for example) the map f : [0, 1]2 → R
2 given

by

f(x, y) = (x, xy)

so that no two of the differentials Df(x, y), (x, y) ∈ (0, 1)2 are co-linear or related by a

rotation or a reflection. Set ν = fµ. If y = fx and µ generates P at x, then ν generates

Df(x)P at y, and so at a.e. point ν generates distinct distributions. Thus the partition

according to generated distributions is the partition of R
2 into points, and the conditional

measures are atoms which all generate trivial distributions.

One may also ask the dual question concerning sums and integrals of SMs. Consider SMs

µ, ν. Then µ + ν is equivalent to the sum of three mutually singular measures, µ + ν ∼

µ′ + θ + ν′, such that µ′ ≪ µ, ν′ ≪ ν, and θ absolutely continuous with respect to both µ

and ν (the measure θ is obtained as the part of ν which is non-singular with respect to µ,

and ν′ = ν − θ; then µ′ is the part of µ singular with respect to θ). Using the propositions

at the beginning of this section, we find that µ+ ν is a SM and at a typical point generates

a distribution which is generated at some point by µ or ν (or both).

However, passing from finite sums to integrals of SMs we lose this behavior. Suppose

Q is a distribution on SMs. Then
�
µdQ(µ) need not be an SM. Indeed, any probability

measure θ ∈ M can be written as θ =
�
δx dθ(x). Each δx is a USM but θ need not be.

3.5. From CP-distributions to FDs to USMs. In this section we show that centerings

of CP-distributions are FDs, and typical measures for an FD are USMs.

We begin with the second of these. As discussed in Section 2.6, if P is an ergodic

distribution for a transformation of a compact metric space, then P -a.e. point is generic for

P . USMs are analogies of generic points and in our setting the analogue of the statement

above is:

Theorem 3.9. If P is an EFD then P -a.e. µ is a USM and generates P .
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Proof. We assume that P is in its extended version. For f ∈ C(P(M� )) let f̃ : M∗ → R

denote the map µ 7→ f(µ� ). Choose a countable norm-dense family F ⊆ C(P(M� )). Then

by the ergodic theorem, for f ∈ F and P -a.e. µ we have

(3.4) lim
T→∞

1

T

� T

0

f̃(S�

t µ) dt =

�
f̃ dP

so, since F is countable, for P -a.e. µ this holds simultaneously for all f ∈ F . For P -a.e. µ

the limit (3.4) in fact hold holds for all f ∈ C(P(M� )), because F is dense in C(P(M� ))

and the set of functions satisfying (3.4) is norm closed. Finally, by the quasi-Palm property

for P -a.e. ν the limit (3.4) holds for µ = T ∗
xν for ν-a.e. x ∈ B1, and by S∗-invariance for

ν-a.e. x ∈ R
d, which is the desired result. �

Next let Q be a base-b CP-distribution and recall the definition of the centering operation,

Definition 1.13. Since it is immediate that (µ′, x′) = M∗
b (µ, x) satisfies

S∗
log b(Txµ) = T ∗

x′µ′

the map

cent0 : (µ, x) 7→ T ∗
xµ

is a factor map from the discrete-time measure preserving system (M∗ × B1, Q,M
∗
b ) to

the discrete-time measure preserving system (M∗, cent0Q,S
∗
log b), and the continuous time

system (M∗, cent0Q,S
∗) is thus a factor of the suspension of (M∗ × B1, Q,Mb) with roof

function of height log b.

Theorem 3.10. The centering of an extended CP-distribution is a FD.

Proof. Let Q be an extended CP-distribution with restricted version P . Adopting the

notation from the construction ofQ in Section 3.2, let (µn, xn)n∈Z be the two-sided M� ×B1-

valued process with marginal P and (µn+1, xn+1) = M�

b (µn, xn), and let π denote the map

(µn, xn)n∈Z 7→ ν constructed there, i.e.

(3.5) ν = lim
n→∞

T ∗
Dbn (x−n)µ−n

so ν ∼ Q.

Let R = cent0Q. Let B ⊆ R
d be a bounded neighborhood of 0 and let

(3.6) R′ =

�
〈ν〉∗B dR(ν) =

� (�
B

δT∗
x ν dν(x)

)
dR(ν)

we must show that R ∼ R′.

Fix a measurable set U ⊆ M∗. Suppose that R(U) = 0. In order to show that R′(U) = 0

it suffices by (3.6) to show that� �
1U(T ∗

x ν) dν(x) dR(ν) = 0

For this it is enough to show that for a.e. realization (µn, xn)n∈Z of the process and ν

satisfying (3.5), we have �
1U (T ∗

xν) dν(x) = 0
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By (3.5), this will follow once we establish that for a.e. realization of the process and every

n ∈ N, �
1U(T ∗

xν) dT
∗
Dbn (x−n)µ−n(x) = 0

Fixing n, by stationarity of the process (µn, xn)n∈Z, and the fact that the map (µn, xn) → ν

intertwines the shift operation and S∗
log b, we have�

1U(T ∗
x ν) dT

∗
Dbn (x−n)µ−n(x) =

�
1U(S∗

n log bTxν) dµ0(x)

=

�
1S∗

−n log b
U (Txν) dµ0(x)

= R(S∗
−n log bU)

= R(U)

= 0

because R is S∗-invariant. We have established the claim a.s. for each n and therefore a.s.

for all n ∈ N, as desired.

Conversely, for any measure ν, since 0 ∈ B we have

〈ν〉∗B1
≪

�
〈θ〉∗B d 〈ν〉∗B1

(θ)

so since R =
�
〈ν〉∗B1

dQ(ν),

R =

�
〈ν〉∗B1

dQ(ν) ≪

� �
〈ν〉∗B d 〈ν〉∗B1

dQ(ν) =

�
〈ν〉∗B dP (ν) = R′

Finally, the fact that centQ =
� log b

0 S∗
t cent0Qdt is quasi-Palm follows from the same

property for R = cent0Q. Therefore centQ is an FD. �

4. Examples

In this section we present a variety of examples EFDs and USMs. The proofs usually

involve constructing a stationary process similar to a CP-process and centering. Many of

our examples have appeared before in related contexts. For additional examples of similar

constructions see [17, 5, 19].

4.1. Example: CP-processes arising from stationary processes. Recall that a sta-

tionary process is a sequence of random variables (Xn)n∈Z such that for every n ∈ Z and

k ≥ 0 the k-tuples (X0, . . . , Xk) and (Xn, . . . , Xn+k) have the same distribution.

The following example appears in [14]. Let process (Yn)n∈Z be a stationary process with

values in {0, . . . , b− 1} and define a random point x and measure µ by14

x = 1 + 2

∞∑

k=1

b−kYk

µ = distribution of x given (Yn)n≤0(4.1)

14If we had defined CP-processes on [0, 1)d using b-adic partitions, the definition of xn would simplify to
x =

P

∞

i=1
b−kYk.
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Then one may verify that the distribution of (µ, x) is a CP-distribution.

With the same notation, another example is

xn = 1 + 2

∞∑

n=1

b−nYn

µn = δxn
(4.2)

Notice that the first construction generally gives rise to a non-trivial EFD, while the second

gives rise to the EFD supported on the measure δ0 ∈ P(M).

As a concrete example, let b = 3 and consider the process (Yn) in which each Yn is

chosen independently, equal to 0 or 2 with probability 1/2 each. This corresponds to the

product measure on {0, 1, 2}Z of the measure 1
2δ0 + 1

2δ2. Because the Yn are independent,

given Y0, Y−1, Y−2, . . . the distribution of each Yk, k ≥ 1 is the same as before, and so

x = 1 + 2
∑

3−iYi is distributed according to the normalized Hausdorff measure µ an affine

image of the standard Cantor set:

C = {−1 + 2x : x ∈ [0, 1] can be written in base 3 using only the digits 0, 2}

The CP-distribution we get is δµ × µ. Note that the first component doesn’t change when

M3 is applied.

As a by-product of this we have:

Proposition 4.1. A given EFD may be the centering of many distinct CP-processes.

Proof. The trivial EFD arises as the centering of the CP-distribution (δx, x) constructed as

above from a process (Yn). These distributions are different for different initial processes

because, from the distribution of (δx, x) we can recover the process, by setting Yn= n-th

base-b digit of 1
2 (x− 1). �

4.2. Example: ×m-invariant measures on the [0, 1]. Let b ≥ 2 be an integer and

let µ be an ergodic probability measure on [0, 1] which is invariant under the b-to-1 map

fb : x 7→ bx mod 1. Such a measure can be identified with a stationary process which is the

sequence digits in the base-b expansion of x ∼ µ. As such, µ gives rise to a shift-invariant

measure on {0, . . . , b − 1}N and its natural extension may be realized as a shift-invariant

measure µ̃ on {0, . . . , b− 1}Z which projects to µ on the positive coordinates. It is then not

hard to see that µ =
�
νωdµ̃(ω), where νω is the distribution of

∑∞
n=1 b

−iωi given (ωj)j≤0.

As we saw above the distribution on νω for ω ∼ µ̃ is an ergodic restricted CP-distribution

P (after we identify [0, 1] with B1 = [−1, 1]).

Proposition 4.2. Every µ as above is a USM for an ergodic EFD P , supported on measures

whose dimension is 1
log bh(µ, fb), where h(·, ·) is the Kolmogorov-Sinai entropy.

For a detailed the proof see [18].

4.3. Example: Self-similar measures. Let Λ be a finite set and {fi}i∈Λ a system of

contracting similarities of R
d, i.e.

fi(x) = riUi(x) + vi
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for some 0 < ri < 1, vi ∈ R
d and Ui an orthogonal transformation of R

d. For a = a1 . . . an ∈

Λn write

fa = fa1 ◦ fa2 ◦ . . . ◦ fan

It is well known that for every x ∈ R
d and a ∈ ΛN the sequence fa1...an

(x) converges, as

n → ∞, to a point ϕ(a) ∈ R
d which is independent of x. Furthermore, ϕ : ΛN → R

d is

continuous, and its image X is the maximal closed set with the property X =
⋃

i∈Λ fi(X)

(the attractor of the IFS). A set X which arises in this way is called a self similar set.

The IFS {fi}i∈Λ satisfies the strong separation condition if the sets fi(X), i ∈ Λ are

pairwise disjoint; this implies that ϕ is an injection. If strong separation holds then, by

replacing Λ with Λk for some large k and the system {fi}i∈Λ with {fa}a∈Λk , and then

applying a compactness argument, one may assume that there is an open set A ⊆ R
d such

that X ⊆ A and fi(A), i ∈ Λ are pairwise disjoint and contained in A.

Let µ̃ be a product measure on ΛN with marginal (pi)i∈Λ. The image µ = ϕµ̃ on X is

called a self-similar measure. We claim that a self similar measure is uniformly scaling, and

furthermore that the associated FD is supported on measures which on every bounded set

are equivalent to a restriction of µ, up to a similarity.

Let G < GLn denote the group generated by the orthogonal maps Ui, i ∈ Λ and let

γ denote Haar measure on G. Consider the distribution P on M × R
d × G obtained by

selecting y ∼ µ and U ∼ γ, and forming the pair (Uµ,Uy, U).

For (ν, y, V ) ∈ M × R
d × G which satisfies V −1ν = µ and V −1y ∈ suppµ define

M(ν, y, U) = (ν′, y′, V ′) ∈ M × R
d × G as follows. Let i ∈ Λ is the unique index such

that V −1y ∈ fiA. Let Ai = fiA. Now define

ν′ =
1

pi
V f−1

i V −1(ν|Ai
)

y′ = V f−1
i V −1y

V ′ = UiV

One may then verify that (i) M is define P -a.e., (ii) P is invariant underM , (iii) P is adapted

in the sense that the distribution of the second coordinate y given the first component ν is

ν.

One can now repeat almost verbatim the construction of an FD from a CP-distribution

to obtain am FD from P . One starts with a process (νn, yn, Vn)n∈Z whose marginals are

P and such that M(νn, yn, Vn) = (νn+1, yn+1, Vn+1). Let in ∈ Λ be the index such that

V −1
n yn ∈ fiA and define gn : R

d → R
d by gn = Vnf

−1
in
V −1

n . Then if for n ≥ 0 we set

θn = g−1 . . . g−n+1g−nν,

then θn, n ≤ 0 are a compatible sequence and the distribution of T ∗
y0

(lim θn) is an FD

supported on affine images of µ in which the orthogonal part comes from G. In particular

it follows that the original measure µ is uniformly scaling for this EFD. This argument is

related to Theorem 1.37, although if G is infinite then µ is not homogeneous.
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4.4. Example: Random fractals. As another demonstration of the versatility of EFDs

we give an example of a fairly general random fractal construction that gives rise to an EFD.

Let (In, Jn, wn)∞n=1 be an ergodic stationary process in which each pair (In, Jn) consists

of disjoint closed sub-intervals of [−1, 1] with disjoint interiors and 0 < wn < 1. We assume

that

(4.3) E(w1 log |I1| + (1 − w1) log |J1|) <∞

where |I| is the length of I.

Construct a random measure µ as follows: set µ(I1) = w1 and µ(J1) = 1 − w1, and

continue recursively for each of the sub-intervals I1, J1 using (I2, J2, w2), i.e. in the next

step we define µ(T−1
I1

(I2)) = w1w2, µ(T−1
I1

(J2)) = w1(1 − w2) and similarly µ(T−1
J1

(I2)) =

(1 − w1)w2, µ(T−1
J1

(J2)) = (1 − w1)(1 − w2). As before, we use the notation TI for the

homothety mapping I onto [−1, 1].

Unlike in our previous examples, the measure µ and x ∈ suppµ does not necessarily

determine the sequence of intervals Wn ∈ {In, Jn} such that x ∈
⋂
Wn. However the

construction is very similar, except one must include this information in the points of the

phase space explicitly.

Let U denote the set of closed intervals of [−1, 1] and consider the distribution P on

triples (ν, y, (Un)∞n=1) ∈ M� × [−1, 1]×UN obtained by choosing a realization of the process

(In, Jn, wn), constructing µ as above, choosing x ∼ µ, and selecting the sequence Un ∈

{In, Jn} in such a way that TIn
TIn−1 . . . TI1x ∈ [−1, 1] (this defines the choice uniquely).

Let M be the map given by

M(ν, y, (Un)n∈N) = (T�

U1
ν , TUi

y , (Un+1)n∈N)

which is defined whenever y ∈ supp ν and TIn
TIn−1 . . . TI1x ∈ [−1, 1] for all n, and hence

is defined P -a.e. One then verifies that P is M -invariant. By definition, given ν, the

distribution of y is ν.

One now proceeds as before to define an extended version of this distribution, and a

corresponding EFD by centering. The only caveat here is that one does not introduce a

discrete-time system first, because the amount of magnification at each step if different.

Rather one constructs a continuous-time distribution directly as the suspension of the pro-

cess by a function whose height at (ν, y, (Un)n∈N) is log |Un|. One must ensure that the

mean of this height function is finite for the resulting distribution to be finite. This is the

reason for the integrability condition (4.3) above, which ensures that the roof function is in

L1. One may verify that when the integrability condition fails, µ has dimension 0 a.s.

5. Equivalence of the models

So far we have shown that (a) the centering of a CP-distribution is an FD, and (b) a.e.

measure of an FD is a USM. In this section we provide the remaining implications. In this

section we prove the following statements:
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Theorem 5.1. Let b ≥ 2 and µ ∈ M. For µ-a.e. x, every accumulation point P of 〈µ〉x,T

as T → ∞ is the centering of a base-b CP-distribution Q, and in particular is an FD.

Furthermore Q may be chosen so that
�
θ� dQ(θ) = λ� .

Theorem 5.2. Given b ≥ 2, every FD is the centering of a base-b CP-distribution Q which

can be chosen so that
�
θ� dQ(θ) = λ� .

Throughout this section we fix an integer b ≥ 2 and for brevity we write

M = M�

b

St = S�

t log b

Note that we have changed the time scale for St so that S1 and M scale by the same factor

b. In particular

〈µ〉x,T =
1

T

� T

0

δSt(Txµ) dt =
1

T log b

� T log b

0

δ
S�

t (Txµ)
dt

We introduce analogous notation for CP-sceneries:

〈µ, x〉N =
1

N

N∑

n=1

δMn(µ,x) ∈ P(M� × B1)

These operations are distinguished notationally by the number of arguments inside the

brackets, which correspond to the space on which the resulting distribution is defined: 〈µ〉x,T

and 〈µ, x〉N are distributions on M� and on M� ×B1, respectively.

5.1. Outline of the argument. Let µ ∈ M� and fix a µ-typical x. Let P be an accumu-

lation point of the scenery distributions at x, i.e. for some sequence Nk → ∞,

P = lim
k→∞

〈µ〉x,Nk

We may assume without loss of generality thatNk are integers. Our strategy is to construct a

CP-distribution whose centering is P . A first attempt, which fails only narrowly, is the most

direct approach: pass to a subsequence Nk(i) such that 〈µ, x〉Nk(i)
→ Q for a distribution Q

on M� ×B1, and show that (i) Q is a CP-distribution, (ii) the extended version of P is the

centering of the extended version of Q.

The argument is complicated by the fact that the transformation M is not continuous,

and by some related issues. If M were continuous then (i) would follow as in Section 2.6,

using the fact that the averages 〈µ, x〉Nk(i)
are nearly invariant under M and the continuity

of M to obtain invariance of the limit. As for (ii), note that if it were not for the restriction

involved we would have the identity

cent 〈µ, x〉Nk(i)
= 〈µ〉x,Nk(i)

Indeed, if (µ′, x′) = Mn(µ, n) and µ′′ = T ∗
x′µ′ then µ′′ = (S∗

nTxµ)|B , where B is a translate

of B1 and the restriction occurs because of the restriction in the definition of M . Thus

the distribution on the left hand side is supported on measures which are restrictions of

the measures supporting the distribution on the right. However, after taking the limiting

distributions and passing to extended versions this difference should disappear.
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Assuming that we can justify the previous steps, the main issue that remains is to show

that Q is adapted, i.e. that conditioned on the first component ν, the distribution of the

second component is ν. Let us prove this first.

In the following paragraphs we utilize the machinery of integration and martingales for

measure-valued functions. To justify this one may appeal to the general theory of vector-

valued integration. Alternatively, the definition of conditional expectation of measure-valued

functions and the associated limit theorems can be obtained by integrating them against

a dense countable family of continuous functions, noting that after integrating we have

reduced to the usual theory of R-valued expectations and martingales, and applying the

Riesz representation theorem to recover a statement about measures.

Recall that a distribution Q on M� × B1 is adapted if, given that the first component

of a Q-realization is ν, the second component is distributed according to ν. One may verify

that this is equivalent to the condition that for every f ∈ C(M� ),�
f(ν) · ν dQ(ν, x) =

�
f(ν) · δx dQ(ν, x)

Proposition 5.3. Let ν ∈ M� . Then for ν-a.e. y and any f ∈ C(M� ), writing QN =

〈ν, y〉N ,

lim
N→∞

(�
f(θ) · (θ − δz) dQN (θ, z)

)
= 0

in the weak-* topology on M� . In particular, any accumulation point of 〈ν, y〉N , N =

1, 2, . . ., is adapted.

Proof. First, C(M� ) is separable, so it suffices to prove this for a dense countable family

of functions in C(M� ). Hence it is enough to prove, with f fixed, that for ν-a.e. y the

sequence (νn, yn) = Mn(ν, y) satisfies

(5.1) lim
N→∞

(
1

N

N∑

n=1

f(νn)δνn
− f(νn)δyn

)
= 0

Define measure-valued functions Fn, Gn : B1 → M� by

Fn(y) = f(T�

Dbn(y)ν) · T
�

Dbn(y)ν

and

Gn(y) = f(T�

Dbn (y)ν) · δTDbn (y)y

Now, proving (5.1) is equivalent to showing that for ν-a.e. y,

lim
N→∞

1

N

N∑

n=1

(Fn(y) −Gn(y)) = 0

in the weak-* sense. Since

E(Gn|Dbn) = Fn

the desired limit follows from the law of large numbers for Martingale differences [10, The-

orem 3 in Chapter 9].
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Since the map Q 7→
�
f(θ) · (θ − δy) dQ(θ, y) is continuous in Q for every f ∈ C(M� ),

we conclude from the comment preceding the proposition that any accumulation point Q of

〈ν, y〉N is adapted. �

Suppose we begin with a µ-typical point x, an accumulation point P = limk→∞ 〈µ〉x,Nk
,

and choose an accumulation points Q = limi→∞ 〈µ, x〉Nk(i)
. We have just seen that Q

is adapted and we would like to show that Q is M -invariant, and that the centering of

the extended version of Q is the extended version of P . We shall not quite prove these

statements for µ, but instead perturb µ by a random translation and prove them for the

perturbed measure, replacing Q above with an accumulation point of the b-sceneries of the

perturbed measure. We may first assume, without loss of generality, that µ is supported on

B1/2(0), since it suffices to prove the result for an affine image of µ, and we may apply the

map x 7→ 1
2x.

Proposition 5.4. Let µ be a probability measure on B1/2. Fix a λ-typical y ∈ B1/2 and

µ-typical x and let µ′ = Tyµ and x′ = x+ y. Suppose Nk → ∞ and that 〈µ〉x,Nk
→ P and

〈µ′, x′〉Nk
→ Q. Then a.s. (with respect to the choice of y and x),

(1)
�
θ dQ(θ) = λ�

(2) Q is M -invariant.

(3) P = (cent Q̃)� , where Q̃ is the extended versions of Q.

In particular, Q is a CP-distribution for a.e. choice of y and x and P is an EFD.

The final conclusion of the proposition follows by combining (2) and (3) above with the

previous proposition, and implies Theorem 5.1. Indeed, let y ∈ B1/2 be a λ-typical point.

Fix a set A of full µ-measure so that for x ∈ A the last proposition holds for µ′ = Tyµ and

x′ = x+y. Fix x ∈ A and suppose that P = limMk→∞ 〈µ〉x,Mk
for some sequence Mk → ∞.

Pass to a subsequence Nk of Mk such that 〈µ′, x′〉Nk
→ Q, and note that 〈µ′〉x′,Nk

→ P . So

by the proposition Q is a CP-distribution with the desired properties and P is a centering

of the extended version of Q.

We prove (1)–(3) in the sections below. Throughout the proof let y, x, µ′, x′, Ni, Q and

P be as in the proposition. Write

Qi = 〈µ′, x′〉Ni

so Qi → Q. The statements the follow hold a.s. for the choice of x, y.

5.2. Proof of Proposition 5.4 (1). Note that the distributions of the second component

of Qi and Q are determined completely by x′ and the sequence (Ni)
∞
i=1, and do not depend

on µ′. Since x′ = x + y where y is a λ-typical point, this is the same as the distribution of

the second coordinate of 〈λB1 , z〉Ni
for a λB1+x-typical point z, and by Proposition 5.3 or

the law of large numbers, these distributions converge to λB1 . Therefore we have�
δz dQ(θ, z) = λB1

But by adaptedness, we also have�
δz dQ(θ, z) =

�
θ dQ(θ, z)
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as can be seen by conditioning on θ the left hand side on θ. (1) follows.

5.3. Proof of Proposition 5.4 (2). Let

E =
⋃

D∈Db

∂D

where ∂ denotes topological boundary, and define

N1 = {(θ, z) ∈ M� ×B1 : θ(E) = 0}

N2 = {(θ, z) ∈ M� ×B1 : θ(Db(z)) > 0}

and

N = N1 ∩ N2

These are Borel sets, and M is defined and continuous on N .

Lemma 5.5. Q is supported on N .

Proof. From Proposition 5.4 (1) it follows that Q is supported on N1, since λ(E) = 0.

To prove that Q is supported on N2 we argue as follows. First, we claim that for a.e.

choice of x, y in the definition of µ′, x′,

(5.2) lim inf
n→∞

(
−

1

n log b
logµ′(Dbn(x′))

)
≤ d

Indeed, given y and µ′ = Tyµ, for µ′-a.e. x′ (equivalently, µ-a.e. x and x′ = x + y), this

bound follows from the fact that the Hausdorff dimension of R
d is d, and hence any measure

supported on it has upper pointwise dimension at most d. See e.g. Section 6.1.

Next note that, writing again (µ′
n, x

′
n) = Mn(µ′, x′)

µ′(Dbn(x′)) =

n−1∏

j=0

µ′(Dbj+1(x′))

µ′(Dbj (x′))
=

n−1∏

j=1

µ′
j(Db(x

′
j))

Taking logarithms and using (5.2) we see that

1

n log b

n−1∑

j=0

(
− logµ′

j(Db(x
′
j))
)
≤ d+ 1

for all large enough n. For n = Ni and Qi defined as above, this can be written as�
(− log θ(Db(z))) dQi(θ, z) ≤ (d+ 1) log b

Since the integrand is non-negative, we conclude e.g. by Chebychev that for every r > 0,

Qi

{
(θ, z) : θ(Db(z)) < e−r

}
≤

(d+ 1) log b

er

From this we conclude (by approximating θ(Db(z)) by a continuous function) that a similar

bound holds for Q, and hence

Q {(θ, z) : θ(Db(z)) > 0} = 1

so Q is supported on N2. �
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Let Q̂i denote the distribution obtained by replacing each summand δ(θ,z) in the average

Qi with δ(bθ,z) where θ̂ is the measure

θ̂ = θB1\E

Then Q̂i ∈ N . Clearly the fact that Q is supported on N1 implies that

Q̂i −Qi → 0

Since Qi = 1
Ni

∑Ni

j=1M
j 〈µ′, x′〉 it is also clear that

MQi −Qi → 0

Writing

MQ̂i − Q̂i = (MQ̂i −MQi) + (MQi −Qi) + (Qi − Q̂i)

we see that the last two terms on the right tend to 0 as i→ ∞. The first term on the right

does also, again using (1), and we conclude that

MQ̂i − Q̂i → 0

Since we have already shown that Q̂i → Q, that Q̂i, Q ∈ N , and that M is continuous on

N , we conclude that MQ̃i →MQ, and so by the above

MQ−Q = 0

as desired.

5.4. Proof of Proposition 5.4 (3). We continue with the previous notation. We wish to

show that the extended version of P is the centering of the extended version Q̃ of Q, or

equivalently, that (cent Q̃)� = P . We continue to write M = M�
b and St = S�

t log b.

For m ∈ N let Pm = Sm centQ, or more explicitly, the push-forward of Q through the

map

(5.3) (θ, z) 7→

� 1

0

δSm+t(Tzθ) dt

Lemma 5.6. Pm → P .

It is easy see from the definition of the extended version of Q and the centering operation

that Pm → (cent Q̃)� , so the lemma implies P = (centQ)� .

Proof of the Lemma. Let Pm,i = Sm centQi. Our work will be completed by showing that

lim
i→∞

Pm,i = Pm

and

lim
m→∞

lim
i→∞

Pm,i = P

Indeed, the first of these follows from the fact that the map (5.3) is continuous wherever it is

defined (and it is defined Q-a.e.). Note that this continuity relies partly on the integration

in (5.3) since the maps St = S�

t log b are discontinuous when there is mass on the boundary
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of Be−t log b . However this can occur only for countable many t and from this one can deduce

continuity. We omit the details.

As for the second statement, we make the following observation. With m fixed and n ∈ N,

write (µ′
n, x

′
n) = Mn(µ′, x′), and notice that as long as the distance of x′n from E is at least

b−m, we have

Sn+m(Tx′µ′) = Sm(Tx′
n
µ′

n)

(note that if the operators St were defined using the ∗-variant instead of � this would be an

identity without any assumption on x′n). Thus under these assumptions,� 1

0

δSn+m+t(Tx′µ′) dt = Sm cent δ(µ′
n,x′

n)

Therefore, we can write

Pm,i − 〈µ′〉x′,Ni
=

1

Ni

Ni∑

n=1

Sm cent δ(µ′
n,x′

n) −
1

Ni

Ni−1∑

n=0

� 1

0

δSt(Tx′µ′) dt

=
1

Ni

Ni−m∑

n=1

(
Sm cent δ(µ′

n,x′
n) −

� 1

0

δSn+m+t(Tx′µ′)dt

)

+
m

Ni
θm,i

where θm,i is a probability measure, so that with m fixed, we have m
Ni
θm,i → 0 as i → ∞.

On the other hand, as we have seen, in the sum above the summand vanishes whenever

the distance of x′n from E is at least b−m. Therefore, as i → ∞ the right hand side is a

probability measure whose total mass is asymptotic to

(5.4)
1

Ni
#{1 ≤ n ≤ Ni : d(xn, E) > b−m}

Using again the fact that 1
Ni

∑Ni

n=1 δxn
→ λB1 as i → ∞, we see that (5.4) is bounded by

cm with limm→∞ cm = 0. This completes the proof. �

5.5. CP-distribution from FDs.

Proof of Theorem ??. We show that if P is an FD then there is a CP-process Q with

centQ = P . If P is ergodic choose a P -typical µ. By Theorem 1.6 we know that µ

generates P , so by Proposition 5.4 (3), P is the centering of a CP-distribution with the

desired properties.

In the non-ergodic case let ECP denote the set of ergodic CP-distributions and EFD the

set of EFDs. One may verify that both sets are measurable. The map cent : ECP → EFD

is measurable and the paragraph above shows that it is onto. Thus any probability measure

τ on EFD lifts to a probability measure τ ′ on ECP with cent τ ′ = τ . If P is an FD

we may identify it with a probability measure τ ∈ P(EFD) corresponding to its ergodic

decomposition. Let τ ′ ∈ P(ECP) be the lift of τ . Then Q =
�
Rdτ ′(R) is a CP-distribution

and centQ = P .
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In order to obtain the additional property of Q replace EFD in the argument above with

the set of ergodic CP-distributions Q with
�
θ dQ(θ) = λ� . We have seen that Q 7→ centQ

is still onto EFD, and we proceed as before. �

6. Geometry of FDs and USMs

6.1. Dimension and entropy. Recall that Db is the partition of R
d into cubes ×d

i=1Ii for

intervals of the form Ii = [k
b ,

k+2
b ), for k ∈ Z with k = b mod 2. This partitions B1 into bd

homothetic cubes. For a partition D of E ⊆ R
d and x ∈ E, we write D(x) for the unique

partition element containing x. The proof of the following can be found in [28, Theorem

15.3]:

Lemma 6.1. Let µ be a measure on R
d and b an integer. Then for µ-a.e. x,

Dµ(x) = lim sup
n→∞

logµ(Dbn(x))

log(1/bn)
,

Dµ(x) = lim inf
n→∞

logµ(Dbn(x))

log(1/bn)
.

In particular, dimµ = α if and only if

lim
n→∞

logµ(Dbn(x))

n log(1/b)
= α for µ-a.e. x

If µ is a probability measure and Q is a finite or countable partition, then the Shannon

entropy of Q with respect to µ is

H(µ,Q) = −
∑

Q∈Q

µ(Q) log µ(Q),

with the convention that 0 log 0 = 0. This quantity measures how spread out µ is among

the atoms of Q. For the basic properties of Shannon entropy see [6].

Lemma 6.2. If dimµ ≥ β then

lim inf
b→∞

1

log b
H(µ,Db) ≥ β

Proof. Immediate from Lemma 6.1 and the basic properties if H(·, ·). See also [9]. �

With b fixed, the function H(·,Db) is discontinuous on the space of probability measures

on R, but only mildly so:

Lemma 6.3. There is a constant C (depending only on the dimension d) such that, for

every b, there is a continuous function fb on the space of probability measures on R
d, such

that for any probability measure µ on R
d,

|fb(µ) −H(µ,Db)| < C

Proof. Choose a countable partition unity ϕu, u ∈ N
d such that each ϕu is continuous and

supported on a cube B2/b(
1
bu); it not hard to see such a partition exists. We claim that

fb(µ) = −
∑

u∈Zd

(

�
ϕu dµ) log(

�
ϕu dµ)
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has the desired properties.

Given µ define a probability measure ν on R
d × N

d by

ν(A× {i}) =

�
A

ϕi(x) dµ(x)

Let F1 be the partition of R
d × N

d induced from the first coordinate by Db, that is F1 =

{I × N : I ∈ Db}. Then

H(µ,Db) = H(ν,F1)

Also, let F2 be the partition of R
d × N

d according to the second coordinate. Then

H(ν,F2) = fb(µ)

Let E denote the partition E = {I × {j} : I ∈ Db , j ∈ N}. Notice that E refines F1 and

each A ∈ F1 contains at most 3d atoms A′ ∈ E . Therefore,

H(ν,F1) ≤ H(ν, E) = H(ν,F1) +H(ν, E|F1) ≤ H(ν,F1) + d log 3

Similarly E refines F2 and each atom A ∈ F contains at most 3d-atoms of E , so

H(ν,F2) ≤ H(ν, E) = H(ν,F2) +H(ν, E|F2) ≤ H(ν,F2) + d log 3

Combining the last four equations we have

|H(µ,Db) − fb(µ)| = |H(ν,F1) −H(ν,F2)| ≤ d log 9

�

6.2. Dimension of FDs.

Proof of Lemma 1.18. Let P be an EFD and 0 < r < 1. Set

F (µ) =
logµ(Br(0))

log r

and notice that

logµ(BrN )

log(rN )
=

1

N log r

N∑

n=1

log
(
µ(Brn(0))/µ(Bn−1

r (0))
)

=
1

N

N∑

n=1

log(S∗
−n log rµ(Br(0)))

log r

=
1

N

n∑

i=1

F (S∗
−n log rµ)

This is an ergodic average for the transformation S∗
− log r (note that − log r > 0), so the limit

exists P -a.e. Although S∗
− log r may not be ergodic, it is easy to see directly that the limit is

invariant under S∗
t for every t (e.g. because it is the local dimension at 0, which is invariant

under staling), so it is P -a.e. constant and equal to α =
� log µ(Br(0))

log r dP (µ). Thus the local

dimension at 0 satisfies Dµ(0) = α for P -a.e. µ and by the quasi-Palm property, for P -a.e.

µ we have Dµ(x) = α for µ-a.e. x, so dimµ = α. �
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Setting

F̃ (µ) =

� − log r

0

F (S∗
t µ) dt

it follows from from the lemma above that dimP =
�
F̃ dP , and the same formula holds for

non-ergodic FDs. The advantage of F̃ is that, as a function F̃ : M� → R, it is continuous.

Proof of Proposition 1.19. Let µ ∈ M. Recall that the set of accumulation points of 〈µ〉x,t

is denoted Vx.

Let us show for example that for µ-a.e. x,

Dµ(x) ≥ essinfy∼µ inf
Q∈Vy

dimQ

Denote the right hand side by β. By Theorem 1.7 there is a set of full µ-measure of points x

such that every accumulation point of 〈µ〉x,T is an FD. For such a point x, for every Q ∈ Vx

we have
�
F̃ dQ = dimQ ≥ β, and so, since F̃ is continuous we must have

lim inf
T→∞

1

T

� T

0

F̃ (µ�

x,T ) dt ≥ β

since otherwise there would be accumulation points Q ∈ Vx of µx,T with mean F̃ -value

smaller than β. Since F̃ ≥ 0 it follows that

lim inf
N→∞

−
1

N log b

N∑

n=1

F (µ�

x,−n log b) dt ≥ β

and we conclude that Dµ(x) ≥ β as in the proof above. �

We next show that there is a unique FD of maximal dimension. A similar statement for

Zähle distributions was proved in [30].

Proposition 6.4. The only d-dimensional FD on R
d is the point mass at λ� .

Proof. It suffices to prove this for EFDs. Let P be a d-dimensional EFD on R
d, and let Q

be an ergodic CP-distribution with centQ = P . By [14], the dimension of Q (defined as the

Q-a.s. dimension of a measure) is given by

d =

�
1

log b
H(µ,Db) dP (µ)

Since the maximal entropy of any measure on [−1, 1]d with respect to Db is d log b, we

conclude that P -a.e. µ gives equal mass to each of the Db-cells of [−1, 1]d. Iterating Mb for

a µ-typical point we find that every cell D ∈ Dn
b of positive µ-mass has mass b−n. It follows

that µB1 = λB1 and hence P = δλ∗ . �

USMs do not enjoy this property. In fact any measure µ on R
d which has exact dimension

d is a USM and generates the unique d-dimensional FD. Indeed at µ-a.e. x every Q ∈ Vx has

dimension d (Proposition 1.19), and hence Vx = {δλ∗}. Since there is only one accumulation

point it is in fact the limit of the scenery distribution, so µ generates δλ∗ at x. Hence there

are USMs µ of dimension 1 with µ ⊥ λ.



DYNAMICS ON FRACTALS AND FRACTAL DISTRIBUTIONS 39

6.3. Dimension of projected measures. In this section we prove Theorem 1.23. We first

establish the case of an arbitrary measure and a linear map.

Let µ ∈ M be a probability measure and π ∈ Πd,k and suppose dim πµ < α. Let Vx

denote the accumulation points of scenery distributions at x. We aim to show that there

is a set of positive measure A ⊆ R
d such that for x ∈ A there is some Q ∈ Vx such that

EQ(π) < α. Let C ⊆ R
k denote the set of y with Dπµ(y) < α − ε where ε > 0 is chosen so

that πµ(C) > 0. By Proposition 3.8 it suffices to prove our claim for µ|π−1C . So we may

assume from the outset that Dπµ < α− ε at πµ-a.e. point.

Also, we may assume for convenience that π is the coordinate projection π(x) = (x1, . . . , xk),

that µ ∈ M� , that a base b ≥ 2 has been fixed and that a random translation applied to

µ so that the conclusions of Section 5.1 hold, i.e. for µ-a.e. x, every accumulation point Q

of the b-scenery distribution 〈µ, x〉N as N → ∞ is a CP-distribution and its centering is an

FD in Vx.

For brevity denote Mb = M�

b , and when there is ambiguity write Dd
b or Dk

b to indicate

whether the partition is of R
d or R

k. For each N define τN : R
k → N by

τN (y) = min{n ≥ N : πµ(Dk
bn(y)) > 2−(α−ε)n}

For x ∈ R
d we write τN (x) = τN (πx). Note that the level sets of τN in R

k belong to
⋃

n≥N Dk
bn , and if D ∈ Dk

bn(y) is one of these sets then π−1D decomposes into a disjoint

union of Dd
bn -cells, because π is a coordinate projection.

Lemma 6.5. For each N ,�
1

τN (y)

τN (y)∑

n=1

1

log b
H(T�

D
bn−1(y)πµ,D

‖
b) dπµ(y) < α− ε

Proof. Write ν = πµ. Fix N and a ν-typical y ∈ R
k and write τ = τN (y). For 1 ≤ n ≤ τ

let (νn, yn) = Mn
b (ν, y), and let Dn = Dk

bn(y). By definition,

ν(Dτ ) > b−(α−ε)τ

Taking logarithms we have

α− ε > −
1

τ log b
log ν(Dτ )

= −
1

τ log b

τ∑

n=1

log
ν(Dn)

ν(Dn−1)

= −
1

τ log b

τ∑

n=1

log νn−1(Db(yn−1))

Integrating over y ∼ ν gives the lemma. �

Define the distribution QN ∈ P(M� (Rd) ×B1) by

QN =

�
〈µ, x〉τN (x)−1 dµ(x)

Proposition 6.6.
�

1
log bH(πθ,Db) dQN (θ) < α− ε for all large enough N .
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Proof. This is essentially the previous lemma together with concavity of entropy. By defi-

nition of QN , the quantity we wish to bound is

(6.1)

�
1

τN (x)

τN(x)∑

n=1

1

log b
H(πT�

Dbn (x)µ,D
k
b ) dµ(x)

Fix a πµ-typical y and 1 ≤ n ≤ τN (y). Let D = Dk
bn(y) and E = π−1(D). Since E is the

union of the cells Dbn(x), x ∈ E we have�
E

πT�

Dbn(x)µdµ(x) = T�

Dπµ

therefore by concavity of entropy�
E

H(πT�

Dbn (x)µ,Db) dµ(x) ≤ H(T�

Dπµ,Db)

inserting this into 6.1, the desired inequality follows from the previous lemma. �

Using Markov’s inequality, it follows that there exists an ε′ > 0 such that for each N

there is a set AN ⊆ R
d with µ(AN ) > ε′ and such that for x ∈ AN we have

1

τN (x)

τN (x)∑

n=1

1

log b
H(πT�

Dbn (x)µ,D
k
b ) < α− ε′

Therefore there is a set A ⊆ R
d satisfying µ(A) ≥ ε′ and such that for each x ∈ A the

above holds for some sequence Ni → ∞. By the same argument with bm in place of b,

m = 1, 2, . . . we may assume that as Ni → ∞ this holds for all bm. Replacing H(·,Dk
bm)

with a continuous approximation as in Lemma 6.3, we see that for x ∈ A, any accumulation

point Q of 〈µ, x〉τNi
(x) satisfies�

1

m log b
H(πθ,Dbm) dQ(θ) < α− ε′ +

C

m log b

Since πµ is exact dimensional Q-a.s. we have, using bounded convergence,�
1

m log b
H(πθ,Dbm) dQ(θ) →

�
dimπθ dQ(θ) = dimQ

(Q may not be ergodic, but recall that in that case the dimension is by definition the integral

of the dimension of measures). Since this holds for all m and the error term tends to zero

as m → ∞, the inequality above implies EQ(π) ≤ α− ε′. The centering of Q is in Vx, and

this is what we set out to prove.

The bound for dimϕµ when ϕ is a regular map ϕ ∈ C1(Rd,Rk) can be reduced to the

linear one by “straightening out” the map at the expense of “twisting” the measure. First,

we note that it suffices to prove the claim locally, i.e. that for every point x ∈ suppµ there is

a neighborhood in which the theorem holds for the restricted measure. For a small enough

neighborhood U of x we can find a C1 local diffeomorphism U → R
d, so that ϕ = πψ where

π is a fixed linear map (e.g. projection onto the first k coordinates). The existence of such

a ψ is a simple consequence of the implicit function theorem. Thus we can apply the linear

theorem to ψµ and what remains is to understand the relation between the accumulation
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points of scenery distributions of ψµ at ψx and the analogous accumulation points for µ at

x. But this is a simple matter using 1.9. We leave the details to the reader.

The result is valid under the weaker assumption of differentiability of ϕ rather than C1.

For this one may repeat the argument in the proof of the linear case, using directly the

nearly-linear nature of ϕ at small scales. We omit the details.

6.4. A USM whose projections misbehave. In this section we show that when µ is a

USM generating an EFD P , it may still happen that dimπµ > EP (π), i.e. the inequality

in Theorem 1.23 cannot in general be replaced by an equality, or that πµ is not exact

dimensional.

We first introduce a general method for constructing USMs. Let µ, ν be probability

measures on B with ν(∂B) = 0, and N a large integer. The (ν,N)-discretization of µ is the

measure η defined by

η =
∑

A∈DN

µ(A) · T−1
A ν

That is, on every cell A ∈ DN we replace µ|A with a scaled copy of ν of total mass as µ(A).

Suppose we are given USMs νi generating EFDs Pi. Consider the following construction,

which produces a sequence of non-atomic measures µ1, µ2, . . .. Begin with µ1 = ν1. Assuming

we have constructed µi−1, choose a large integer Ni and let µi be the (νi, Ni)-discretization

of µi−1.

Lemma 6.7. For µ1, µ2 . . . constructed as above, if Ni is chosen sufficiently large at each

stage then µn → µ, and for every every ε > 0, for µ-a.e. x and large enough i we have for

all Ni ≤ T < Ni+1 that

d
(
〈µ〉x,T , conv(Pi, Pi+1)

)
< ε

where d(·, ·) is a compatible metric on P(M�). In particular, if P�

i → P then µ is a USM

for P .

Proof. We do not give a full proof but point out the main consideration. Consider the

measure µ2 which is the (ν2, N2)-discretization of ν1, If one examines a scenery, then up to

time close to logN2 the scenery “looks like” the scenery of ν1. Also, on most of the space

(away from the boundaries of the cells of DN2), from time slightly larger than log(1 + ε)N2

the scenery looks like that of ν2. There is a small part of the space where this is not so,

but this part can be made arbitrarily small by choosing N2 large (because by assumption

ν2(B1) = 0). Now for T > (1 + ε)N2 the scenery at a good point will look like a convex

combination of the scenery of ν1 at that point up to time N2, some “mixed” scenery from

time N2 to (1+ ε)N2, and the scenery of ν2 at an associated point up to time T − (1+ ε)N2.

If we make N2 large enough then again with very high probability (on the choice of the

initial point) the first and last of these will be close in distribution to P1 and P2. Therefore

overall the scenery up to time T will be close to a convex combination of P1 and P2. Also,

assuming that Nn, n ≥ 3 are chosen large enough this will continue to hold when µ2 is

replaced by µ3, for T ≤ N3. This argument can now be repeated incrementally, with a

choice of a sequence of ε→ 0. The set of “bad” points at each stage can be made summable
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so that by Borel-Cantelli, for µ-a.e. point we will be bad at only finitely many scales, and

the lemma follows. �

We now turn to the first construction, a USM whose projection is larger than predicted by

Theorem 1.23. Let ν′ be Hausdorff measure on the set of x ∈ [0, 1] whose base-10 expansion

contains only the digits 0 and 9. This is a USM, e.g. since the measure ν′ is homogeneous

(Definition 1.35). Let ν = ν′ × ν′, which is also homogeneous and is a USM for an EFD

P which is supported on product measures. Note that dim ν = dimP = 2 dim ν′ < 1. Let

π(x, y) = x, and note that dimπν = dim ν′ < dim ν.

Let Rθ : R
2 → R

2 denote rotation by angle θ. Choose a sequence θn → 0 such that that

dimπ(Rθn
ν) = α(P ). This is possible since the θ’s for which this holds have full Lebesgue

measure by Theorem 1.20. Let νn = Rθn
ν and Pn = R∗

θn
P , so νn generated Pn and Pn → P .

Finally, construct µ from the sequence νn as above using a sequence N1, N2, . . . for which

the conclusion of the last lemma holds.

By the lemma µ generates P . We claim that if the Ni grow quickly enough, dimπµ =

α(P ) > EP (π). In order not to keep the presentation short, let us show only the weaker

claim that there is a sequence bn → ∞ such that 1
log bn

H(πµ,Dbn
) → α(P ). This is enough

to deduce that the exact dimension of πµ, if it exists, is not equal to dimπµ. The point is

that for each n the projection πνn has dimension α(P ), and hence for large enough b′n we

have 1
log b′n

H(πνn,Db′n) > α(P ) − 1
n . It follows that the same is true (with slightly worse

error term) for µ. Letting Nn+1 ≫ b′n +Nn gives the desired result.

Our second construction is of a USM µ whose projection is not exact dimensional. The

idea is the same, except that for even n we define θn as before and for odd n we take θn = 0.

If Ni grow quickly enough we will have that the entropy of µ at certain scales is like that of

a measure of dimension dim ν′ and at others like a measure of dimension dim ν = 2 dim ν,

and hence the measure is not exact dimensional.

6.5. Conditional measures. Let us first discuss in a more detail conditional measures and

the remark after Theorem 1.27. For a measure ν and set E write νE = 1
ν(E)ν. Let µ ∈ M

and π ∈ Πd,k and recall that [x]π = π−1(πx). For x ∈ suppµ define

µ[x]π = lim
r→∞

(lim
ε→0

µBr∩π−1(Bε(πx)))
B1(x)

where in this formula Br ⊆ R
d and Bε(y) ⊆ R

k. There is then a set of full µ-measure of x

such that for each fixed r the inner limit exists and is equal to the conditional measure of

µBr
on π−1(y). Furthermore these measures are consistent, up to multiplication by a scalar,

on each Br, so after normalization the limit as r → ∞ of these measures exists. This may

be taken as the definition of the “conditional measure” of µ on [x]π when µ is infinite.

These conditional fiber measure exists a.e. but may not exist for a particular x. However,

if P is an EFD then by the quasi-Palm property, since for P -typical µ the conditional

measures are defined a.e., for P -typical µ it is also defined for x = 0. Also it is clear that

(S∗
t µ)π−1(0) = S∗

t (µπ−1(0))
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Hence the push-forward Pπ−1(0) of µ via µ 7→ µπ−1(0) is an S∗-invariant distribution (which

is defined on R
d but its measures are supported on π−1(0), which may be identified with

R
k).

Finally, Pπ−1(0) may be seen to be an EFD. We omit the proof of this. Since EFDs

are exact dimensional this establishes Proposition 1.28. As noted in the introduction, The-

orem 1.30 on dimension conservation follows from Furstenberg’s corresponding result for

coordinate projections and CP-processes, and from our correspondence between EFDs and

CP-distributions. What remains to prove is Theorem 1.31 on the conditional measures of

USMs, which follows by standard arguments from the dual version for projections:

Proof of Theorem 1.31. It is a general fact that if µ is a finite measure with exact dimension,

then for every π ∈ Πd,k and µ-a.e. x,

dimπµ+ dimµ[x]π = dimµ

See for example Theorem ?? of Matilla [22], which may be adapted to prove this. Our

theorem now follows from Theorem 1.23 in the linear case and in the non-linear case it

follows by “straightening the map out”, as explained at the end of Section 6.3. �

6.6. A USM without dimension conservation. In this section we construct a self-

similar Cantor set C ⊆ R and a C∞ diffeomorphism f0 : R
2 → R

2 with Df |C×C = id,

such that the coordinate projection π(x, y) = x is injective on the set E = f0(C × C) and

dimπE = dimC.

Taking µ to be the natural (normalized Hausdorff) measure on C×C we know that µ is a

USM for an EFD P of the same dimension as µ, i.e. 2 dimC. Because of the condition on the

derivative of f0 the measure ν = f0µ is also a USM for P (Proposition 1.9). ν is supported

on E and πν is supported on πE so its dimension is ≤ dimC. Since the conditional measure

ν[x]π are ν-a.s. supported on singletons, we find that for ν-a.e. x,

dimπν + dim ν[x]π ≤ dimC + 0 < 2 dimC = dim ν

Thus dimension conservation fails for the USM ν. Similarly, taking f = πf0 we find that

for every y ∈ f(C × C),

dim f(C × C) + dim((C × C) ∩ f−1(y)) < dimC × C

Since C×C is a homogeneous set in the sense of Furstenberg [14] this shows that dimension

conservation for homogeneous sets does not hold for C∞ maps.

We turn to the construction. Let C be the regular Cantor set constructed on [0, 1] by

removing the middle 8
20 of the interval and iterating.15 C is the set of points x ∈ [0, 1]

whose base-20 representation x = 0.x1x2 . . . does not contain the eight digits 6, 7, . . . , 12, 13.

We also associate to each x = 0.x1x2 . . . ∈ C a sequence (cn(x))∞n=1 ∈ {0, 1}N defined by

cn(x) = 1{xn≥6}. This gives a homeomorphism of C and the product space {0, 1}N.

We first define f0 on C×C and later extend it to [0, 1]2. Fix a rapidly increasing sequence

of integers nk → ∞ (we will specify its properties later) and define

15One can carry out the construction for any Cantor set. We have chosen to work in base 20 for convenience.
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projection onto x-coordinate

f(C × C)

The image of C × C
under f0(x, y) = (x + θ(x), y)

Figure 6.1. Schematic representation of f as composition of a plane map
and a projection.

θk(y) = ck(y) ·
7

20
· (

6

20
)−nk+1

and

θ(y) =

∞∑

k=1

θk(y)

finally,

f0(x, y) = (x+ θ(y), y)

see figure 6.1.

Lemma 6.8. If nk grows rapidly enough then x+θ(y) determines both x and y, i.e. f = πf0

is injective.

Proof. We prove by induction on k that x+θ(x) determines x1, . . . , xnk
and c1(y), . . . , ck(y).

For k = 1, we can cover C (uniquely) by 2n1 disjoint intervals I1, . . . , I2n1 of length

( 6
20 )−n1 (ordered from left to right). The gap between each two intervals is at least 8

20 ( 6
20 )−n1+1,

which is longer than any of the intervals Ij (this is why C is slightly easier to work with

than the usual middle-third Cantor set). Given one of these intervals Ij , note that Ij +θ1(y)

either is equal to Ij (if c1(y) = 0) or else is a proper subinterval of the gap between Ij , Ij+1,

centered at the midpoint between them (if j = 2n1 it is contained in the ray (1,∞) to the

right of Ij). Thus if we know which of the intervals Ij or I ′j = Ij + 7
20 · ( 6

10 )−n1+1 the point
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x+ θ1(y) belongs to we can determine j (which is the same as determining x1, . . . , xn1) and

determine c1(y). Since all these intervals are disjoint, if x+ θ(y) is close enough to x+ θ1(y)

then we can determine the interval that the latter belongs to by choosing the interval that

the former is closest to. More precisely, the gaps between Ij , I
′
j , Ij+1 are of size 1

20 ( 6
20 )−n1+1,

so we can recover the interval from x+ θ(y) if

sup
y

∞∑

k=2

θk(y) <
1

40
(

6

20
)−n1+1

and this holds as long as nk+1/nk is large enough. Assuming this, x + θ(x) determines

x1 . . . xn1 , c1(y).

Now fix k and suppose we know x1, . . . , xnk−1
and c1(y), . . . ck−1(y). Let Q1, . . . , QN ⊆

C ×C rectangles whose intersection with C ×C partition it according to these digits. Each

Qi projects to an interval under f and these intervals are disjoint. It suffices to show that we

can recover xnk−1+1 . . . xnk
and ck(y) for each (x, y) ∈ Qi. The argument for this is identical

to the base of the induction above. �

Lemma 6.9. If nk → ∞ rapidly enough then dimπf0(C × C) = dimC.

Proof. First note that C ⊆ πf0(C
2) giving the lower bound.

For the other direction, fix k and let I1, . . . , I2nk be the intervals of length ( 6
20 )nk−1

covering C. Then f(C × C) is covered by

{(Ii)
′ +

k∑

j=1

θj(y) : 1 ≤ i ≤ 2nk , y ∈ C}

where I ′ denotes the interval with the same center as I but of length 1 + 2
20 the length of

I. There are altogether 2k · 2nK intervals in this collection, having length (1+ 2
20 )( 6

20 )−nk ,

so the box dimension of f(C2) is bounded above by

lim inf
k→∞

log(2k2nk)

log
(
(1 + 2

20 )(6/20)−nk

)

if nk grows rapidly enough this equals 1/ log2(10/3) = dimC. �

Each θk(·) is currently defined on C but can be extended to a smooth function on [0, 1],

and if nk is large enough then the extension θk can be made arbitrarily Ck-close to the

constant function and its derivatives on C ×C can be made equal to the identity, since the

original θk is just a translation. Therefore, if nk → ∞ rapidly enough θ =
∑
θk will be

smooth, and therefore so will f0, and the derivatives will be the identity on C × C.

7. Fractal distributions with additional invariance

7.1. Homogeneous measures.

Proof of Proposition 1.36. Let µ be a homogeneous measure. Then we may choose a point x

which is both homogeneous and so that every accumulation point of the scenery distributions

at x are FDs. Let P be such an accumulation point (we think of P as a restricted FD)

and choose a P -typical ν. Then ν is an accumulation point of µx,t as t → ∞, and so by
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homogeneity µ≪ T�

B ν for some ball B. Since ν is a USM generating the ergodic component

Pν of P we find that µ is a USM. In particular P = Pν and µ-a.s is independent of x.

It remains to show that a P -typical ν is homogeneous. Let P̃ denote the extended version

of P . By our previous remark a P -typical ν contain a positive-measure ball E ⊆ B1 on which

ν is equivalent, after re-scaling, to µ. It follows from S∗-invariance of P̃ that for P̃ -typical ν̃

there is a ball E ⊇ B1 on which ν̃ is equivalent, after re-scaling, to µ. Since ν̃� is equivalent

to ν̃ on B1, we find that ν̃� is P̃ -a.s. equivalent to µ on some ball A, so the same is true for

P -typical ν instead of P̃ -typical ν̃. Now, if ν is fixed and ν′ is an accumulation point of ν

at a ν-typical point y, we know by homogeneity of µ that µ≪ TCν
′ for a ball C and hence

ν ≪ TAν
TCν

′. This shows that ν is homogeneous. �

Theorem 1.37 is now immediate from our results for typical measures of EFDs.

7.2. EFDs invariant under groups of linear transformations. Next we turn to Propo-

sition 1.38. In fact this is an immediate consequence of lower semi-continuity of the function

EP (·), and the last part uses also Marstrand’s theorem (Theorem 1.20).

This proposition sheds light on the main results of [19]. Let us recall these two of these:

Theorem 7.1 ([19]). Let µ, ν be measures on [0, 1] which are invariant, respectively, under

x 7→ 2x mod 1 and y 7→ 3y mod 1. Then for every x ∈ Π2,1 except the coordinate projections,

we have

dimπ(µ× ν) = min{1, dimµ+ dim ν}

Theorem 7.2 ([19]). Let f!, . . . , fr be contracting similarities of R
d. Suppose the orthogonal

parts of fi generate a dense subgroup of the orthogonal group. Let X be the attractor of the

IFS {fi} and µ the Hausdorff measure on X. Then for every π ∈ Πd,k we have

dimπµ = min{k, dimµ}

In both these cases, one can show that the measures of interest are USMs generating an

EFD. Furthermore, the invariance of the original measure leads to invariance of the EFD.

Indeed, in Theorem 7.1, µ × ν is invariant under (x, y) 7→ (2x mod 1, y), which leads to

invariance of the generated EFD under (x, y) → (2x, y) (this follows from considering the

action on sceneries). It is similarly invariant under (x, y) 7→ (x, 3y). Let G denote the

linear group generated by these two maps. It is not hard to show that the orbit orbits

of GLk(R) × G on Πd,k consist of a dense open set whose complement corresponds to the

coordinate projections. Theorem 7.1 now follows from Proposition 1.38. Similarly, for µ

as in Theorem 7.2, self-similarity of µ leads to invariance of the generated EFD under the

dense subgroup H of the orthogonal group generated by the linear parts of the contractions.

Thus the orbit of GL(Rk) ×H on Πd,k is the entire space Πd,k leading to Theorem 7.2.
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