
ON THE DYNAMICS AND RECURSIVE PROPERTIES OFMULTIDIMENSIONAL SYMBOLIC SYSTEMSMICHAEL HOCHMANAbstrat. We study the (sub)dynamis of multidimensional shifts of �nite type and so�shifts, and the ation of ellular automata on their limit sets. Suh a subation is alwaysan e�etive dynamial system: i.e. it is isomorphi to a subshift over the Cantor set theomplement of whih is a reursive sequene of basi sets.Our main result is that, to varying degrees, this reursive-theoreti ondition is also su�-ient. We show that the lass of expansive subations of multidimensional so� shifts is thesame as the lass of expansive e�etive systems, and that a general e�etive system an berealized, modulo a small extension, as the subation of a shift of �nite type or as the ationof a ellular automaton on its limit set (after removing a dynamially trivial set).As appliations, we haraterize, in terms of their omputational properties, the numberswhih an our as the entropy of ellular automata, and onstrut SFTs and CAs withvarious interesting properties. 1. Introdution1.1. Bakground. Let Σ be a �nite set of symboli and let ΣZ
d be the ompat spae ofon�gurations, i.e. of Σ-olorings of Zd. This spae is the full shift, and Zd ats on it by thetranslations{Tu}u∈Zd given by (Tu(x))(v) = x(v + u), v ∈ Zd.By a d-dimensional pattern over Σ we mean a Σ-oloring of a �nite subset of Zd. If L is a�nite set of patterns then they de�ne a shift of �nite type (SFT) by

SL = {x ∈ ΣZ
d

: no element of L appears in x}here, a pattern a ∈ ΣF is said to appear in a on�guration x if (Tux)|F = a for some u ∈ Zd.The set SL is easily seen to be losed and invariant under the shift ation, so may be regardedas a Zd-dynamial system. Bakground on topologial dynamis an be found in setion 2.If ∆ is some other �nite alphabet and Y ⊆ ∆Z
d is a subshift whih is the fator of an SFT,then Y is alled a so� shift.SFTs and so� shifts have been studied in topologial dynamis, physis and omputer sieneas models for interating systems, and in dimensions d ≥ 2 they are apable of very omplexbehavior. Indeed, not only are these systems hard to analyze but most questions about them areformally intratable, in the sense that, for most non-trivial questions, there is no algorithm whihDate: August 20, 2008.2000 Mathematis Subjet Classi�ation. 37B15, 37B40, 37B50, 94A17, 03D45.1



2 MICHAEL HOCHMANdeides them given a �nite presentation of the system as input. [Ber66, Rob71, Hur87, HKC92,Kar94℄. The reursive struture of SFTs is also known to be omplex [Mye74, Hur90, Sim07℄.One an nonetheless ask meaningful questions about the dynamis of SFTs and so� shifts.Researh in this diretion has been motivated by questions from partile physis and rys-tallography, and also by the mathematial theory of one-dimensional SFTs and so� shifts,whih are in many respets quite well understood. Many striking examples have emerged, e.g.[Moz89, BS94℄, and also the feeling that almost anything an happen for higher dimensionalSFTs. Below we show that in a ertain preise sense this is true.1.2. E�etive systems and subations of SFTs and so� shifts. In this work we studySFTs and so� shifts through their subations, by whih we mean the restrition of the Zd-ationto a subgroup H < Zd. We are interested in understanding what dynamis an arise in thisway.1It turns out that to a large extent the subdynamis an be haraterized, and the harateri-zation is reursion-theoreti. This is another example of a general philosophy that has emergedreently: for many harateristis of these systems there is a trivial restrition of a reursivenature, and this turns out to be the only restrition. An example of this is our work in [HM07℄,where the entropies of SFTs and so� shifts are haraterized. Another example is the Medvedevdegree invariant introdued by Simpson [Sim07℄.To state our results we require some de�nitions. A sequene (an) of integers is reursive (R)if there is an algorithm A (formally a Turing mahine) that, upon input n ∈ N, outputs an.A set of integers is reursively enumerable (RE) if it is the set of elements of some reursivesequene.By identifying the integers with other sets we an speak of reursive sequenes of otherelements. For example, sine N ∼= N2 (and the bijetion an be made e�etive), we an speak ofreursive sequenes of pairs of integers; and in the same way of sequenes of �nite sequenes ofintegers.Let {0, 1}N denote the Cantor set and for a �nite I ⊆ N and a ∈ {0, 1}I let
[a] = {x ∈ {0, 1}N : x|I = a}denote the ylinder set determined by a. As a ranges over all �nite patterns of this sort, [a]provides a basis of losed and open sets for the topology. Notie that the set of suh a's, whihparametrizes the ylinder sets, an be put into e�etive bijetion with N.De�nition 1.1. A subset X ⊆ {0, 1}N is e�etively losed if its omplement is the union of areursive sequene of ylinder sets.21Sine passing to �nite index subgroup ation on an SFT is still an SFT, and similarly for so� shifts, it is notimportant whih subgroup we onsider, and in formulating our results we will take the anonial Z

k-subgroupsof Z
d generated by the �rst k of the standard generators e1, . . . , ed of Z

d.2An e�etively losed set is also the omplement of the union of a reursive set C of ylinder sets, i.e. there is analgorithm that deides in �nite time whether a given ylinder set [a] is in C. This ondition is a-priori strongerand we thank S. Simpson for pointing this equivalene out to us.



ON THE DYNAMICS AND RECURSIVE PROPERTIES OF MULTIDIMENSIONAL SYMBOLIC SYSTEMS 3Sine there are only ountably many reursive sequenes, there are only ountably manye�etively losed sets.We may similarly de�ne e�etively losed subsets of the Cantor set when parametrized as
ΣZ

d for arbitrary �nite Σ, or losed subset of ({0, 1}N)Z
d . Let Tu denote the shift ations onthese spaes.De�nition 1.2. A subset X ⊆ ΣZ

d (Σ �nite) is an e�etively symboli system (ESS) if it ise�etively losed and invariant under the shift.A subset X ⊆ ({0, 1}N)Z
d is an e�etively dynamial system (EDS) if it is e�etively losedand invariant under the shift.3We will also say that a dynamial system is e�etive if it is isomorphi to an ESS or EDS.One again, both these lasses are ountable; but we know of no �natural� type of dynamisof subshifts or totally disonneted systems whih annot arise as ESSs or EDSs, respetively.Indeed, all ombinatorial onstrutions whih appear in the literature give systems of this type,assuming they are de�ned by reursive parameters (for example, Sturmian sequenes will beESSs if the rotation and partition used are omputable). We note that an expansive EDS is(isomorphi to) an ESS, and every ESS is (isomorphi to) an EDS (though an ESS an also beembedded in ({0, 1}N)Z

d in a non-e�etive way).If L is a �nite set of patterns then the set of all translates of patterns from L is an RE set,and thus the SFT SL is an ESS. A symboli fator of an ESS is an ESS, so so� shifts are ESSs;and the subation of an EDS is an EDS (we prove both these statements in setion 3). Thisprovides a restrition on the subdynamis of SFTs:Theorem 1.3. The subation of an SFT or so� shift is an EDS.This neessary ondition turns out to be (almost) su�ient. We have the following hara-terization of the expansive subdynamis of so� shifts:Theorem 1.4. A symboli system is isomorphi to the subation of a so� shift if and only ifit is e�etive.Spei�ally, we an realize a Zk-ESS X as the Zk-subation of a Zk+2 so� shift; in fat,the Zk+2 subshift obtained by extending eah on�guration in X identially in the diretions
ek+1, ek+2 omplementary to the subgroup Zk, is a so� shift. We do not know whether eitherof these statements holds when k + 2 is replaed with k + 1.The analog of theorem 1.4 is false for SFTs. Indeed, there are ESSs whih annot be realizedas subations of SFTs, suh as the Chaon system (see proposition 6.2 below). It is an interestingopen problem whether one an haraterize the expansive subations of SFTs.3Equivalently, a Z

d-system is an EDS if it is the inverse limit of a reursive sequene of ESSs. For a system X,this means that X is the inverse limit of a diagram
. . . → Xm

πm−−→ Xm−1 → . . . → X0where Xm ⊆ ({0, 1}m)Z
d and (a) there is a reursive array am,n of patterns with am.n having symbols in {0, 1}m,suh that Xm = S{am,n : n∈N}, and (b) the sequene πm is reursive (note that they are blok odes).



4 MICHAEL HOCHMANLet us now turn to the non-expansive ase of EDS. Note that in order for an EDS to ouras the subation of an SFT or so� shift, it must �rst of all arise as the subation of some ESS.This is a non-trivial restrition, sine not all EDS have this property; for example, there existe�etive odometers, and these do not arise as the subation of any symboli system, e�etiveor not (see setion 6.2). There are also other obstrutions; for example, the topologial Chaonsystem is not the subation of an SFT, though it is an e�etive symboli system and thereforeis the subation of a so� shift. See setion 6.2.These problems disappear if one is willing to allow a small extension. We shall say that afator map π : Y → X is almost-1-1 if the set of points in X with unique pre-image has fullmeasure with respet to every invariant Borel probability measure on X .4 Although weakerthan isomorphism, this relation implies that the statistial behavior of the systems Y and Xare idential in a strong sense: T indues a bijetion of the invariant probability measures on Xand Y , and for every invariant measure ν on Y the fator map is a ontinuous isomorphism of
(Y, ν) and (X, πν).Another type of extension Y → X whih may be onsidered trivial ours when Y extends
X by a diret produt with a well-understood system, that is, Y = X × W , and the fator isprojetion onto the �rst oordinate. We will deal with the partiularly simple ase where W isan isometri ation on a totally disonneted spae.De�nition 1.5. An extension Z → Y of Zk-dynamial systems is an almost trivial isometriextension (ATIE) if we an interpolate a fator

Z → Y × W → Ywhere W is an isometri ation on a totally disonneted spae, Z → Y × W an almost-1-1extension, and Y × W → Y is projetion onto the �rst oordinate.The omposition of ATIEs is an ATIE, and ATIEs do not inrease topologial entropy. Theinvariant measures of a system and an ATIE extension of it di�er by at most the addition ofsome pure-point rational spetrum, and for this reason and those explained above ATIEs an beonsidered small from the point of view of the ergodi behavior of orbits. We remark, however,that from a purely topologial point of view many properties are not preserved by ATIEs, suhas transitivity, expansiveness and equiontinuity.Our main result for SFTs is:Theorem 1.6. The subation of an SFT is an EDS. Conversely, if Y is an e�etive Zk-system,then there is an SFT X and a Zk-subation of X whih is an ATIE of Y .As before, we an prove this with X a k+2-dimensional SFT; we do not know if the dimensionan be redued to k + 1. We have quite good ontrol of the isometri part of the ATIE, andan make it an odometer. On the other hand, the almost-1-1 part of the extension partly omes4Note that the set of points in X with unique pre-image is a Gδ-set. Some authors de�ne almost-1-1 extensionsby the ondition that this set is dense. This notion is distint from ours, though in the presene of a globallysupported invariant measure, and in partiular when X is minimal, our de�nition implies the other.



ON THE DYNAMICS AND RECURSIVE PROPERTIES OF MULTIDIMENSIONAL SYMBOLIC SYSTEMS 5from the dynamis of a ertain Turing mahine assoiated to the EDS, and we have little ontrolover it. We mention that the SFT X whih we onstrut in the proof has entropy 0 with respetto the full Zk+2-ation.It is not lear how far one an redue the size of the extension in theorem 1.6. We show inproposition 6.2 below that if the subation of an SFT fators onto the Chaon system then, withrespet to the unique invariant probability measure on the fator, almost every �ber ontainsmore than one point, and in partiular the extension annot be almost-1-1. It remains an inter-esting question whether every e�etive system has a �nite-to-1 extension that is the subationof an SFT.1.3. Cellular automata. A ellular automaton (CA) is a ontinuous transformation f : ΣZ
d

→

ΣZ
d of the full shift (with Σ �nite), whih ommutes with the shift ation in the sense that

Tuf = fTu for u ∈ Zd. The Curtis-Hedlund-Lyndon [Hed69℄theorem haraterizes suh maps asthose whih are de�ned loally: the site u in f(x) is determined by the oloring of a neighborhoodof u in x, and the size of the neighborhood is independent of x. This makes CA an attrativedisrete model for interating systems. CAs were introdued in the 1940's by von Neumann[vN66℄. They were popularized by J. Conway in the 1970's with the introdution of his �Gameof Life�, and in the 1980's by the work of Wolfram [Wol84℄. The reursive properties of CA havebeen studied by several authors [Hur87, CHY90, Hur90, Kar94, Sut05℄, and as for SFTs, mostproperties are undeidable. See [Kar05℄ for a reent survey.The limit set of a CA f is Λ = ∩∞
n=1f

n(ΣZ
d

); this is the largest set on whih f ats surjetively.In order to get an ation whih is also injetive, we pass to the natural extension (Λ∗, f∗) of
(Λ, f), i.e. the inverse limit of the diagram . . .

f
−→ Λ

f
−→ Λ

f
−→ . . .

f
−→ Λ. This is the smallestinvertible system extending (Λ, f); we all (Λ∗, f) the limit Z-ation of f .The lasses of limit Z-ations of CA and of Z-subations of SFTs are losely related; they areessentially the same after removing the unavoidable periodi point from the limit sets of CAs.See setion 3 for details. Using this, theorem 1.6 givesTheorem 1.7. The limit Z-ation of a CA is an EDS. Conversely, if Y is a Z-EDS, then thereis a 3-dimensional CA f suh that, after removing from its limit Z-ation a �xed point and itsbasin of attration, the remaining system is an ATIE of Y .We do not know to what extent theorem 1.7 holds in dimension 1 and 2, or what analog theremay be for one-dimensional CA and for injetive or surjetive CAs in any dimension.1.4. Appliations.Entropy of CAs. Entropy is perhaps the most important invariant of a dynamial system (seesetion 7.1 for de�nitions). It has been known for some time that, in general, one annot omputethe entropy of an SFT or CA from its ombinatorial desription. For SFTs this follows fromBerger's theorem [Ber66℄, and for CA was proved by Hurd, Kari and Culik [HKC92℄.We are interested in a somewhat di�erent question, namely, what are the possible numbersthat an arise as the entropy of SFT subations and CAs; a-priori there are only ountably many



6 MICHAEL HOCHMANsuh numbers, and for SFTs in dimension 1 they have a simple algebrai haraterization [Lin84℄.In [HM07℄, we reently proved the following reursive-theoreti haraterization of entropies ofhigher dimensional SFTs:Theorem. [HM07℄ Fix d ≥ 2. Then a real number h ≥ 0 is the entropy of a Zd-SFT if andonly if it is the in�mum of a reursive sequene of rational numbers.This is atually the same lass of numbers whih arises as the entropies of ESSs. In a similarvein, we an now prove the following:Theorem 1.8. For eah d ≥ 1, a real number h ≥ 0 is the entropy of a Zd-EDS if and only ifit is the lim inf of a reursive sequene of rational numbers.Applying theorem 1.8, and the fat that ATIEs do not inrease entropy, we get:Corollary 1.9. For d ≥ 3, the entropies of d-dimensional CA are preisely the non-negativenumbers that are the lim inf of a reursive sequene of rational numbers.Real numbers with various reursive properties have been studied in [ZW01℄, where a ount-ably in�nite hierarhy of number types is desribed. Let us mention here one interesting fat;the lass of number whih are entropies of EDS (and hene of CA) ontains numbers whih arenot the limit of any reursive sequene (in ontrast, the entropies of SFTs always are). Thusthe entropy of some CAs is truly out of reah. This sharpens a theorem of Hurd, Kari andCulik [HKC92℄, who showed that the funtion f 7→ h(f), whih assigns to a CA f its entropy,annot be approximated. What we now know is the stronger fat that not only an the funtionnot be approximated, but there are individual values whih in a very strong sense annot beapproximated.It is an interesting open problem to haraterize the entropies of CA in dimensions 1 and 2.Measures of maximal entropy on SFTs. Interest in measures of maximal entropy on SFTs ismotivated by the study of phase transitions in partile physis, and there are by now severalexamples of SFTs with multiple measures of maximal entropy [BS94, Q�03℄.Theorem 1.6 gives a general mehanism for produing SFTs whose measures of maximalentropy behave in various ways. Given a zero-entropy SFT Y ⊆ ΣZ
d , Σ0 ⊆ Σ and k ∈ N,de�ne an SFT W by superimposing one of k new symbols over eah symbol in Σ0; formally,take the SFT W ⊆ Y ×{0, 1, . . . , k − 1}Z

d de�ned by the ondition that (y, y′) ∈ W if and onlyif y′(u) = 0 whenever y(u) /∈ Σ0. We all W the k-extension (with respet to Σ0). Then
h(W ) = max{µ(

⋃

σ∈Σ0

[σ]) · log k : µ an invariant probability measure on W}and the measures of maximal entropy are in 1-1 orrespondene with the measures maximizingthe quantity above (this approah was used in [HM07℄, but the ontrol there over Y was poorer).One should note however that this tehnique annot produe irreduible (or even mixing) ex-amples, sine in the proedure desribed the system we get fators onto Y , whih, using ourpresent tehniques, always has some disrete spetrum.



ON THE DYNAMICS AND RECURSIVE PROPERTIES OF MULTIDIMENSIONAL SYMBOLIC SYSTEMS 7Another interesting onsequene for CA is that, sine there are Z-EDS without measuresof maximal entropy, there must be 3-dimensional CA with this property as well. This is nototherwise obvious.Fatoring relations. A problem whih has reeived some attention reently is that of determiningthe fatoring relations between SFTs, and partiularly the question whether every SFT withentropy ≥ log N fators onto a full shift on N symbols [JM05℄. Using the tehnique aboveand results from [HM07℄, Boyle and Shraudner reently showed that this is false. As anotherappliation, we answer question 2.10 of [BS07℄, albeit in three rather than two dimensions:Proposition 1.10. There is an SFT Y ⊆ ΣZ
3 with entropy log 2 whih does not fator onto thefull shift {0, 1}Z

3, and it an be obtained as a 4-extension of a uniquely ergodi SFT with respetto a set of symbols Σ0 having density 1/2. On the other hand, there is an in�nite, uniquelyergodi SFT and a set of symbols of density 1/2 whose 4-extension does fator onto the full shifton N symbols.1.5. Organization. The rest of this paper is organized as follows. In the next setion we givesome bakground in topologial dynamis. In setion 3 we disuss some general properties ofEDS and prove theorem 1.3. In setion 4 we desribe some auxiliary onstrutions, and insetion 5 we onstrut so� shifts and SFTs with spei�ed dynamis, proving theorem 1.4 and1.6. In setion 6 we disuss the relation between CAs and subations of SFTs, proving theorem1.7, and give some (ounter-)examples. In setions 7 we disuss entropy of EDS, and in setion8 we prove theorem 1.10 about the fatoring of SFTs onto full shifts.Aknowledgement. I am grateful to Benjamin Weiss for many interesting and stimulating dis-ussions. I also thank the referee for a areful reading and helpful suggestions.2. Topologial dynamisWe ollet here some standard de�nitions from topologial and symboli dynamis.A topologial Zd-dynamial system (X, T ) (sometimes written (X, Zd)) is an ation of Zd byhomeomorphisms {Tu}u∈Zd on a ompat metri spae X ; in this paper we assume that X istotally disonneted. Two dynamial Zd-systems (X, T ) and (Y, S) are isomorphi, or onjugate,if there is a homeomorphism π : X → Y satisfying Suπ = πTu for u ∈ Zd. If π is merely ontothen it is alled a fator map from X to Y , and X is alled an extension of Y .Let Σ be a �nite set of symbols. The spae ΣZ
d of olorings of Zd by Σ is alled thefull d-dimensional shift over Σ, or just the full shift, and its points are alled on�gurations.Topologially the full shift is a Cantor set, and it omes equipped with a natural Zd ation,alled the shift ation, in whih u ∈ Zd ats via the translation Tu : ΣZ

d

→ ΣZ
d de�ned by

(Tux)(v) = x(u + v)We let e1, . . . , ed denote the standard generators of Zd, and write T1, . . . , Td for the orrespondingshift elements.



8 MICHAEL HOCHMANA subset X ⊆ ΣZ
d whih is losed and invariant to the shift (i.e. TuX = X for u ∈ Zd) isalled a subshift, or a symboli system.By the Curtis-Hedlund-Lyndon theorem [Hed69℄, fator maps between subshifts of the samedimension (but possibly distint alphabets) are given by a blok ode: if Y ⊆ ∆Z

d , X ⊆ ΣZ
dand π : Y → X is a fator map, then there is a �nite F ⊆ Zd and a funtion π0 : ∆F → Σ,so that π ats on eah site of x ∈ ∆Z

d by applying π0 to the loal neighborhood of the site:
(πx)(u) = π0((Tux)|F ). The diameter of F is alled the window size of π. Conversely, anysuh map π0 : ∆F → Σ gives rise to a fator map π in this way (the image is automatially asubshift).The property of (X, T ) being isomorphi to a subshift an be haraterized intrinsially: itis equivalent to being totally disonneted and expansive, i.e. there is some ε > 0 suh that, forany x 6= y, there is some u ∈ Zd suh that δ(Tux, Tuy) > ε, where δ is some �xed metri (butthe ondition does not depend on the metri). See [Wal82℄.3. Basi properties of ESSs and EDSsIn this setion we develop some general properties of EDS, in the ourse of whih we willprove theorem 1.3.Theorem 3.1. A subation of an e�etive system is e�etive.Proof. Let X ⊆ ({0, 1}N)Z

d be an e�etively losed subset, invariant under the Zd-shift ation,and let H < Zd be a subgroup. Let K ⊆ Zd be a reursive ross-setion of the projetion
Zd → Zd/H . Then

({0, 1}N)Z
d ∼= ({0, 1}N×K)Hand the homeomorphism is e�etive (it is indued by a omputable identi�ation of (N×K)×Hwith N×Zd). Thus the reursive set of ylinder sets whih together onstitute the omplement of

X in ({0, 1}N)Z
d is a reursive set of ylinder sets with respet to the new parametrization, andshows that X is an e�etive (and learly shift-invariant) subset of ({0, 1}N×K)H , as required. �Sine an SFT is an ESS, theorem 1.3 follows immediately for SFTs. To obtain the samefor so� shifts we �rst need a lassial fat from reursion theory. Reall that a set A ⊆ N isreursive if there is an algorithm that, given n ∈ N, deides whether n ∈ A.Lemma 3.2. Suppose L ⊆ U is an RE set and R ⊆ U × V is a reursive set, and let

M = {b ∈ V : (a, b) ∈ R for some a ∈ L}Then M is RE.Proof. Let A be an algorithm that on input a ∈ U halts if a ∈ L and runs forever otherwise.Let B be the algorithm whih, upon input b ∈ V , iterates over all pairs (n, a) ∈ N × U , and foreah pair runs the algorithm A for n steps (or until it halts) on the input a. If A halts before nsteps are up, it heks whether (a, b) ∈ R, and if so it halts; otherwise it ontinues to the next



ON THE DYNAMICS AND RECURSIVE PROPERTIES OF MULTIDIMENSIONAL SYMBOLIC SYSTEMS 9pair (n′, a′). It is easily seen that this algorithm halts on input b if and only if b ∈ M , so M isRE. �Proposition 3.3. A symboli fator of an EDS is an ESS.Proof. Let Y ⊆ ({0, 1}N)Z
d be an EDS and U1, U2, . . . a omputable sequene of ylinder setswhose union are the omplement of Y . Let Z ⊆ ΣZ

d be a subshift and π : Y → Z a fator map.We must show that Z is e�etive.For eah σ ∈ Σ let Cσ = {x ∈ ΣZ
d

: x(0) = σ} and let Vσ = π−1(Cσ). Eah Vσ is losedand open, so an be written as a �nite union of ylinder sets. Thus we have a onrete, �niterepresentation of the fator map.A ylinder set C ⊆ ΣZ
d intersets Z non-trivially if and only if for there is some y ∈ Y with

π(y) ∈ Z. By ompatness, this ours if and only if for eah n there is a point y ∈ Y so that
T uy ∈ Vx(u) for u ∈ [−n; n]d. Therefore, C is disjoint from Z if and only if for some n,

Y ∩
⋂

u∈[−n;n]d

T−uVx(u) = ∅whih ours if and only if for some n, k,
⋂

u∈[−n;n]d

T−uVx(u) ⊆
k⋃

i=1

UiIn summary,
C ∩ Z = ∅ ⇔ ∃n, k

⋂

u∈[−n;n]d

T−uVx(u) ⊆
k⋃

i=1

UiNow, the relation on the right hand side is omputable, sine the Boolean operations betweenylinder sets are omputable; hene by the preeding lemma, we see that the olletion of ylindersets disjoint from Z is RE, as required. �Corollary 3.4. An expansive e�etive system is isomorphi to an ESS.4. Auxiliary ConstrutionsIn this setion we desribe some onstrutions whih we use later on in the proof of theorems1.4 and 1.6.4.1. Superposition. Given an SFT X = SL de�ned by a �nite set of patterns L, superpositionis a ombinatorial onstrution whih gives an SFT X ′ that fators into (generally not onto) X .Informally, this is done by adding data to eah symbol of X and enrihing L with rules relatingto this new layer of data.More preisely, suppose X is an SFT de�ned by a set L ⊆ ΣF . A system Y is superimposedover X if it is obtained by the following proess. (a) Fix a �nite set ∆, and replae eah symbol
σ ∈ Σ with one or more symbols of the form (σ, δ) ∈ Σ×∆. Let Σ′ be the set of these pairs. Forthe new symbol (σ, δ) ∈ Σ′, we say that δ is superimposed over σ; we also frequently refer to this



10 MICHAEL HOCHMANpair as the symbol σ marked with δ. (b) We extend eah pattern a ∈ L ⊆ ΣF in every possibleway to a pattern in a′ ∈ (Σ′)F by superimposing new symbols over eah symbol of a. () Let
L′ be the extended patterns from (b), together with possibly other patterns. Then the SFT X ′de�ned by L′ is superimposed over X , and has the property that every pattern appearing in X ′onsists of a ∆-on�guration superimposed Σ-on�gurations from X .Note that SL′ may be empty, but if it is not then the map π : X ′ → ΣZ2 whih erases thesuperimposed layer of data maps X ′ to a subsystem of X . We say that x ∈ X is representedin X ′ if one an turn x into a point of X ′ by superimposing a suitable ∆-pattern over x; i.e., if
x = π(x′) for some x′ ∈ X ′.4.2. Subshifts De�ned by Substitution. One of the building bloks of our onstrutionwill be ertain SFTs whose on�gurations possess a simple hierarhial struture. We will notneed anything more ompliated than Robinson's lassial aperiodi SFT [Rob71℄, but ratherthan desribe that system and the modi�ations we would require of it, we will instead relyon a general onstrution due to Mozes [Moz89℄, whih allows a shorter and more transparentexposition.For the remainder of this setion we �x the dimension d = 2. Given a �nite alphabet Σ, asubstitution rule is a map s : Σ → ΣFk for some integer k > 1, where Fk = {1, . . . , k}2 (in theterminology of [Moz89℄, this is a deterministi k× k substitution system with property A). Themap s extends naturally to a map sn : ΣFn → ΣFn·k by identifying ΣFn·k with (ΣFk)Fn .Starting from a single symbol loated at (1, 1) ∈ Z2 and iterating the substitution map, weobtain a sequene of olorings of Fkn for n = 0, 1, 2 . . .. Suh patterns are alled s-bloks. Apoint x ∈ ΣZ

2 is admissible for s if every �nite subpattern of x appears in some s-blok. Thesubshift W ⊆ ΣZ
2 assoiated with s is the set of admissible patterns; this is seen to be losedand shift invariant.For eah on�guration x ∈ W one an �nd a derivation tree of x. This is an in�nite treewhose node set V is a disjoint union V = ∪∞

n=0Vn. Eah Vn is identi�ed with a kn-periodisubset V̂n ⊆ Z2 (that is, a oset of knZ2) in suh a way that V̂0 = Z2 and V̂n ⊆ V̂n−1, and nodes
v ∈ Vn, v′ ∈ Vn−1 are onneted if v̂′ ∈ v̂ + {0, . . . , kn − 1}2, where v̂, v̂′ ∈ Z2 orrespond to
v, v′ respetively. Eah node in the tree also arries a label from Σ. A derivation tree for x ∈ Wmust satisfy the ondition that the labeling of V̂0 agrees with x, and for n > 0, every a ∈ Σand eah u ∈ V̂n labeled a, the labeling of the k × k square of elements of V̂n−1 of whih u isthe lower left orner are labeled aording to the blok s(a). In other words, the labeling of V̂1orresponds to a deomposition of x into k×k bloks arranged in a grid, and then replaing eahblok with the symbol from whih it is derived; this gives a pattern on a oset of kZ×kZ, whihwe may identify with a point in ΣZ

2 , deompose it into k × k bloks and repeat this proedureto get the labeling of V̂2, and so on. One an prove by indution that a �nite version of thisproedure an be arried out n times for eah blok sn(a), a ∈ Σ; sine eah sub-pattern of x isontained a blok of this form, a ompatness argument now shows that for any x ∈ W these�nite derivations an be pasted together onsistently, giving a derivation tree for x.



ON THE DYNAMICS AND RECURSIVE PROPERTIES OF MULTIDIMENSIONAL SYMBOLIC SYSTEMS 11A substitution rule s has unique derivation if eah x ∈ X has a unique derivation tree. Thederivation tree need not be onneted; a tree is onneted if and only if every pair of vertieshave a ommon parent. However, it is easy to see that if C is a onneted omponent of thetree then C ∩ V̂0 is either the whole plane, a half-plane or a quarter-plane, and hene there areat most four onneted omponents whih meet along horizontal and/or vertial lines.Theorem 4.1. (Theorem 4.5 of [Moz89℄) Let s : Σ → ΣFk be a substitution rule with uniquederivation and let W be the assoiated dynamial system. Then there exists an alphabet ∆,an SFT W̃ ⊆ ∆Z
2 , and a one-blok fator map ϕ : W̃ → W suh that x ∈ W has a uniquepre-image under ϕ whenever the derivation tree of x is onneted.Note that theorem 4.1 is false in dimension d = 1.Corollary 4.2. Let s be a substitution rule with unique derivation and ϕ : Ŵ → W as in theorem4.1. Then ϕ is an almost-1-1 extension with respet to the ation of Tu for any u /∈ Ze1 ∪ Ze2.Proof. To any x ∈ W let Dx denote its derivation tree, and to x assoiate the olletion

Cx = {C ∩ V̂0 : C is a onneted omponent of Dx}The funtion C : x 7→ Cx is measurable and takes on ountable many values. Note thataording to our identi�ation of tree nodes with points in the plane, the tree is ated on by theshifts in a natural way, and in partiular CTux = Tu(Cx), where Tu ats on Cx by shifting eahelement of Cx. If Cx ontains a half- or quarter-spae then T n
u Cx ∩ Cx = ∅ for n ∈ Z, beause

u 6∈ Ze1 ∪ Ze2; hene any Tu-invariant measure gives mass 0 to those x with Cx non-trivial.Hene by the Poinare reurrene priniple, the set of x's with disonneted derivation treehas measure zero for every Tu-invariant probability measure on W , and the laim follows fromtheorem 4.1. �4.3. Almost Odometers. Fix 2 ≤ p ∈ N for the remainder of this setion, and onsider thesubstitution s : {◦, •} → {◦, •}{1,...,p}2 de�ned by the rule that maps • to a p× p blok with •'son the diagonal in diretion ր and ◦'s everywhere else, and maps ◦ to the same blok exeptthat the upper right orner is a ◦ instead of a •. For p = 5 this gives the rule
• 7→

◦ ◦ ◦ ◦ •

◦ ◦ ◦ • ◦

◦ ◦ • ◦ ◦

◦ • ◦ ◦ ◦

• ◦ ◦ ◦ ◦

◦ 7→

◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ • ◦

◦ ◦ • ◦ ◦

◦ • ◦ ◦ ◦

• ◦ ◦ ◦ ◦Let Ω = Ωp denote the dynamial system de�ned by these rules. See �gure 4.1 for three iterationsof the rule with p = 2.Let us say that a row or olumn of an s-blok is of type r if the •'s in it appear in an in�nitearithmeti progression with gap pr, and of type ≥ r if it is of type r′ for some r′ ≥ r; for �nitesequenes we adopt the onvention that a sequene of length n ontaining only one ourrene
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Figure 4.1. Three iterations of the substitution for p = 2.of • has period n, and if it has no ourrenes of • its period is ∞. One readily veri�es byindution that for eah r ≥ 1 and all su�iently large bloks a ∈ {sn(•), sn(◦)}, the set

Ir(a) = {i : 1 ≤ i ≤ pn : the i-th olumn of a is of type ≥ r}is the intersetion of [1; pn] with a oset of pr−1Z. Similarly the set
Jr(a) = {i : 1 ≤ j ≤ pn : the j-th row of a is of type ≥ r}is the intersetion of [1; pn] with a oset of pr−1Z.We de�ne Ir(ω), Jr(ω) similarly for in�nite on�gurations ω ∈ Ωp, exept that now a row orolumn with a unique • is also onsidered type ∞. It follows from the �nite ase that in thein�nite ase Ir, Jr are osets of pr−1Z.Denote Zk = Z/kZ, and let Ut = Zpt ×Zpt , and let T1, T2 : Ut → Ut be the maps T1(m, n) =

(m − 1, n) mod pt and T2(m, n) = (m, n − 1) mod pt. We onsider T1, T2 as the generators ofa free abelian group Z2 ating on Ut, giving a Z2-dynamial system (the ation of ourse isnot faithful). Let πt denote redution modulo pt (we allow πt to at in the obvious manner onelements of Z, Zpt′ and Ut′ for t′ ≥ t). We obtain the following ompatible sequene of fatormaps of Z2 dynamial systems:(4.1) . . .
πt−→ Ut

πt−1

−−−→ . . .
π1−→ U1De�ne π̂r : Ω → Ur by

π̂r(ω) = (πr(Ir+1(w)), πr(Jr+1(w))note that πr(Ir+1) is well-de�ned beause Ir+1, Jr+1 are pr-periodi, and that πr−1 ◦ π̂r = π̂r−1beause the Ir's and Jr's are dereasing sequenes. Note also that by de�nition
Ir(Tae1+be2

w) = Ir − a

Jr(Tae1+be2
w) = Jr − bso π̂(Tuω) = Tuπ̂(ω), where u ∈ Z2 and Tu is the element of the appropriate Z2-ation generatedby T1, T2. We see that the system of fators π̂r : Ω → Ur is ompatible with the maps πr :

Ur+1 → Ur, so Ω fators into the inverse limit of the sequene (4.1), whih we denote by U .Sine the Z2-ation on eah Ur is transitive (in the strit sense that every orbit is the entire



ON THE DYNAMICS AND RECURSIVE PROPERTIES OF MULTIDIMENSIONAL SYMBOLIC SYSTEMS 13spae), we see that Ω atually maps onto U . Denote the fator map thus de�ned by ϕ : Ω → U .Note that ϕ(ω) ompletely determines the sets Ir(ω), Jr(ω)With a little more work, we an show that ϕ is almost-1-1 with respet to the ation of
Tu for any u 6∈ Ze1 ∪ Ze2. In fat, another indution shows that given large n and a blok
a ∈ {sn(•), sn(◦)}, the sets I ′r = Ir−1 \ Ir and J ′

r = Jr−1 \ Jr uniquely determine the pattern
a|I′

r×J′

r
. Now, for ω ∈ Ω, the point ϕ(ω) determines the sets Ir(ω), Jr(ω), and these in turndetermine sets I ′r, J

′
r de�ned as above, and a|I′×J′ is determined by ϕ(ω). It is easy to hekthat Z \ ∪∞

r=1I
′
r ontains of at most one point i∗, and similarly Z \ ∪∞

r=1J
′
r ontains at mostone point j∗, so w is determined by ϕ(ω) exept possibly on the olumn {i∗} × Z and the row

Z×{j∗}. We all these the exeptional rows and olumns, if they exist. The set of on�gurationsontaining exeptional rows or olumns is wandering with respet to the ation of any Tu with
u 6∈ Ze1 ∪ Ze2 (the argument is similar to orollary 4.2), so for any Tu-invariant measure on Ωalmost every point is the unique pre-image of its image under ϕ. We have shown that for suh
u, (Ω, Tu) is an almost-1-1 extension of (U, Tu).Let Ω̂ = Ω̂p be the SFT over of Ωp promised by theorem 4.1. The division of ω ∈ Ωinto olumns of type r + 1 but not r uniquely determines the loations of bloks of the type
sr(•) and sr(◦) in ω, beause the right olumn/top row of these bloks an only be loated onolumns/rows whih are type r + 1 but not r. This shows that s has unique derivation, andit follows from orollary 4.2 that (Ω̂, Tu) is an almost-1-1 extension of (Ω, Tu), and hene of
(U, Tu), for every u 6∈ Ze1 ∪ Ze2.Finally, �x ω ∈ Ω and a segment I ⊆ Z, and onsider the segments I ′n = I ×{n} obtained byembedding I in Z2 and translating it vertially a distane of n. Eah I ′n lies in a row of type rfor some r = r(n), and every r ours as r(n) for some n. Now, it is easily seen that if a rowof type r ontains a • in the i-th olumn then a row of a di�erent type annot ontain a • inthis olumn. Hene I ′n an ontain a • in olumn i only when it intersets a row of type r butnot r − 1. It follows that for any |I| + 1 distint values of r, at least one of them is suh thatwhen I ′n is ontained in a row of type r then it does not ontain any •'s; in partiular, one ofthe segments I ′0, I

′
1, . . . , I

′
|I| ontains no •'s. A similar statement holds for translates of {0} × Iin the e1 diretion.4.4. Retangular partitions of Z3. An important role in our onstrutions will be playedby Z3-SFTs whose on�gurations partition Z3 into retangular regions in a speial way. By aretangle we mean a set of the form {i} × I × J ⊆ Z3 where I, J ⊆ Z are segments of integers,possibly in�nite on one or both sides. Write Hi = {i} × Z × Z, and identify on�gurations on

Hi with on�gurations in Z2; thus for a retangle {i} × I × J ⊆ Hi we will say that |I| is thewidth and |J | the height, and refer to e2 as the horizontal diretion and e3 as the vertial one.We next onstrut a Z3-SFT W and a fator map ρ from W into a subshift de�ned over thealphabet {◦, •}, suh that for w ∈ W the on�guration ρ(w)|Hi
onsists of rows and olumnsof •'s, and all other symbols are equal to ◦. Suh a on�guration an be naturally interpretedas induing a partition of Hi into retangles, e.g. with the onvention that the bottom and left



14 MICHAEL HOCHMANborders of a retangle belong to the retangle, and the other borders do not. We all suh aon�guration a retangular partition.We begin with the 2-dimensional SFTs Ω̂3 and Ω̂5 of the previous setion, and extend eah ofthem to a 3-dimensional SFT as follows. We identify on�gurations of Ω̂3 with on�gurationsin the plane Z × Z × {0}, with e1 ∈ Z2 identi�ed with e1 ∈ Z3 and e2 ∈ Z2 with e2 ∈ Z3, andextend the symbols in the e3 diretion; we obtain the system
Ŵ3 = {x ∈ ΣZ

3

: ∃ω ∈ Ω̂3 with x(i, j, k) = ω(i, j) for i, j, k ∈ Z}Similarly, we identify on�gurations of Ω̂5 with on�gurations in the plane Z × {0} × Z, with
e1 ∈ Z2 identi�ed with e1 and e2 ∈ Z2 with e3. We obtain the system

Ŵ5 = {x ∈ ΣZ
3

: ∃ω ∈ Ω̂5 with x(i, j, k) = ω(i, k) for i, j, k ∈ Z}We de�ne W3, W5 similarly starting with Ω3, Ω5; there are natural fator maps Ŵ3 → W3 and
Ŵ5 → W5 indued from the fator maps Ω̂3 → Ω3 and Ω̂5 → Ω5, respetively. Both Ŵ3 and Ŵ5are SFTs, and that the ation of Tu on eah is an almost-1-1 extension of an isometri systemas long as u /∈ ∪3

i=1Zei.Let W = Ŵ3 × Ŵ5, and de�ne the fator map ρ on W so that ρ(w′, w′′)(u) = • if andonly if one of the projetions of w′, w′′ onto W3, W5, respetively, ontains a • at u. Thus eah
w = (w′, w′′) ∈ W indues, via ρ(w), a partition of Z3 into retangles. See �gure 4.2.Proposition 4.3. Let y = ρ(w) for some w ∈ W .(1) There are at most �nitely many planes Hi ontaining in�nite retangles in y.(2) For eah �nite horizontal segment I ⊆ {0} × Z × {0}, eah M > |I| and eah N ∈ N,there is a translate of I in the diretion e1 whih is ontained in some retangle Rindued from y, with width between M and M · 3|I|+2, and height > N .Proof. The �rst statement follows from the fat that points in Ω̂p ontain at most one exeptionalrow or olumn.Next we verify the seond statement. Fix a point w ∈ W indued by a w′ ∈ Ω̂3 and w′′ ∈ Ω̂5,�x a segment I ⊆ Z, M > |I| and N ∈ N, and let I ′ = {0}×I×{0}. A translate I ′+ne1 is loatedbetween two vertial lines in Hn at distane ℓ from eah other if and only if {0} × I + ne1 is ina olumn in w′ between two •'s at distane ℓ apart. The fat that this holds for some translateand M ≤ ℓ ≤ M · 3|I|+2 follows from the remark at the end of setion 4.3, and this ours fora set of n's whih has period 3k for some k. Similarly, a translate I ′ + ne1 is loated in Hnbetween horizontal lines at distane > N from eah other if and only if ne1 is on a olumn in
w′′ between •'s at least > N apart. This ours for a set of n's with period 5m for some m.Sine 3, 5 are relatively prime, there is an n satisfying both simultaneously. �From the �rst part of the proposition we dedue the following, as in orollary 4.2:Corollary 4.4. For any u ∈ Z3 \H0 and for any Tu-invariant probability measure µ on W , theset of w suh that ρ(w) ontains in�nite retangles has µ-probability 0.
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Figure 4.2. Two omponents of a point in W and an indued retangle.4.5. Turing Mahines in Retangles. The lassial Turing mahine is an automaton witha �nite number of internal states whih reads and writes data on a one-sided in�nite arrayof ells indexed by N, alled the tape. Eah ell ontains one symbol from a �xed alphabet.The omputation begins with the mahine loated at the 0-th (leftmost) ell and in a speialinitial state, and the tape is initially blank, or ontains some data whih is the input to theomputation. The state of the tape along with the loation and internal state of the mahineare alled a on�guration; a on�guration uniquely determines all future on�gurations. Theomputation proeeds in disrete time steps. At eah iteration the mahine is loated at someell. The mahine reads the symbol at its urrent positions and, based on this data and onits internal state (and only on these parameters), it performs three ations: (a) it replaes theurrent data symbol with a new one, (b) it moves one ell to the left or to the right, and ()it updates its internal state. The omputation may halt after a �nite number of steps if themahine either moves o� the tape (steps left at ell 0) or enters a designated state, alled thehalting state. Barring these ourrenes, the omputation ontinues forever.



16 MICHAEL HOCHMANAlthough a very simple model, any algorithm written in a modern omputer programminglanguage an be implemented as a Turing mahine, and it is generally aepted that any e�etiveomputation an be performed by a Turing mahine; this is Churh's thesis. For bakgroundand basi fats on this subjet, see [HU79℄.4.6. Representing Turing mahines in SFTs. It is well known that one an use SFTs torepresent the runs of Turing mahines. Given a mahine T , we �rst �x an enoding of theon�gurations of the mahine as bi-in�nite sequenes of symbols (mark the ells at positions
< 0 as �o� limits� by using some speial symbol), with eah ell ontaining a symbol from thetape alphabet and possibly the state of the mahine, indiating that the mahine is loatedat that position. Now onsider two-dimensional on�gurations in whih eah row representsa on�guration of the mahine, and is obtained by iterating by one step the omputation inthe row below it. The transition from row to row is determined loally, and an be enodedin the rules of an SFT, giving a system whose on�gurations desribe in�nite omputations ofthe mahine, assuming their rows represents states of the mahine. To make this work onemust allow the initial on�guration of the mahine to remain unhanged so that it an extendin�nitely downward; then every in�nite (non-halting) run of the mahine an be represented asa two-dimensional array in whih the initial on�guration ours for all negative times, say, andthe omputation starts at row 0; and no halting run an be represented. Of ourse, in additionto arrays representing runs the SFT will also ontain �pathologial� on�gurations whih donot orrespond to omputations, suh as on�gurations ontaining only data and no mahine,tapes with multiple mahines, or omputations whih extend bak in time inde�nitely and donot begin in an initial state.If one wants better ontrol of these matters, one an start with an �infrastruture� layer whihpartitions spae into retangles, suh as the SFT W onstruted in the previous setion. Thenwe an superimpose a layer in whih eah retangle represents a �nite portion of a mahine runon the retangle, with the lower border of eah retangle initialized to a blank tape and themahine starting in the lower left orner in its initial state (this an be enfored by requiringthat the data superimposed over a point in one of the retangular partition's horizontal linesis the �blank� symbol, and over the intersetion of a horizontal and vertial line there must besuperimposed the mahine in its initial state. Both these onditions are loal). Note that westill have no ontrol over initialization of in�nite retangles.A ruial observation is the following. If the mahine halts on blank input, then su�ientlylarge retangles annot be ompleted by this tiling sheme; sine eah on�guration of W on-tains arbitrarily large retangles this means the system we have de�ned is empty. On the otherhand if the mahine does not halt, then the system is not empty. One tehnial point to note isthat there are on�gurations ontaining retangles muh higher than they are wide. In this aseit an our that the mahine tries to move past the right border of the retangle in the ourseof the omputation. If this ours then no further hanges our in the on�guration, sine oneit is gone it annot ome bak, but a pattern an still be superimposed over this retangle. In



ON THE DYNAMICS AND RECURSIVE PROPERTIES OF MULTIDIMENSIONAL SYMBOLIC SYSTEMS 17this ase the on�guration on the retangle does not oinide with the true omputation viewedthrough this retangle, but this does not a�et our previous analysis.Following Robinson, this onstrution an be used to prove that it is undeidable whether anSFT is empty. Indeed, it follows that if there were an algorithm for deiding emptiness of anSFT then we ould use it to deide if a given Turing mahine halts by onstruting from T theSFT above and heking if it is empty.4.7. Real-time Turing mahines. It will be onvenient for us to work with a slightly modi�edmodel of a Turing mahine, in whih the mahine also reeives data in �real time� (that is, in theourse of the omputation) from some external soure. To model this we use mahines whihhave two tapes, the input tape, whih the mahine an read but annot write to, and whosestate at eah moment is determined externally and an hange independently at eah iterationof the omputation; and the memory tape, whih is initially blank, and whih behaves like theordinary tape: the mahine an both read and write to it, and other than hanges made by themahine, it retains its data unaltered from step to step. There is still only one mahine head,whih at eah step reads a symbol from eah of the tapes.This model will our in our onstrution as follows. We will start with the produt W ×

X , where X is some SFT, and superimpose a layer so that retangles indued by W ontainrepresentations of runs of a ertain Turing mahine of the modi�ed type. Note that the rows ofeah retangle ontain a row of symbols oming from the X omponent, and these will serve asthe data on the input tape, so suessive rows in X provide suessive rows of input. The memorytape is simulated in the usual manner as part of the mahine's on�guration, represented bysymbols from the superimposed layer.In our appliation we will want the mahine to be able to read (and store for later use) ksymbols from the i-th ell of the input tape in the ourse of k onseutive time steps, where i, kare determined in the ourse of the omputation. This annot be implemented in the mahinemodel we have desribed, beause after reading a symbol the mahine must take time to storeit out of the way, and by the time it gets bak to the i-th ell it will have missed one or moreinput symbols, whih are onstantly hanging.However, we an implement this funtionality in the SFT representation with the followingtrik. Assume for simpliity that the input language is {0, 1}. We assume that the memorylanguage ontains the symbols 0, 1, and in addition a pair of speial symbols 0̂, 1̂. These speialsymbols are not merely symbols, but are simple automata in their own right: when 0̂ or 1̂ appearsin the memory tape, it tends to move one step to the right with eah time step, overwritingwhatever was there before (the ell it previously oupied beomes blank, unless written to bythe mahine or moved into by another speial symbol). The only thing that an stop a movingspeial symbol is an ordinary symbol 0 or 1, or a speial stop symbol `|'. When a moving symbol
0̂ or 1̂ omes up against a 0, 1 or `|' from the left it turns into an ordinary 0 or 1, respetively.Furthermore this transformation is instantaneous: a speial symbol annot be the neighbor of
0, 1 or `|'. Thus a hange from speial to ordinary symbol propagates instantly to the left. For



18 MICHAEL HOCHMANexample, if we have the sequene
x0̂1̂1̂y|on the memory tape, and x, y 6= 0, 1, 0̂, 1̂, |, then after one more time step we will have
xb011|where b is the blank symbol. Breaking this down, what happened is that eah of the speialsymbols moved one step to the right (the rightmost one overwriting the y), ame up against a'|', turned into a 1. Therefore its neighbor on the left turned into a 1 and the next symbol to theleft into a 0. This instantaneous transformation annot be implemented in a one-dimensionalautomaton on rows beause it requires transmission of information aross long distanes, butis easily implemented as part of the SFT rules. It is similar to the instantaneous mahines ofRobinson [Rob71℄, and we omit the details. Finally, this instantaneous hange will also a�etthe mahine's state as follows: there is a speial state s of the mahine so that if the mahinewas loated at a ell ontaining a speial symbol 0̂ or 1̂, and in the next step its neighbor onthe right is 0, 1 or '|', then the mahine enters state s.Returning now to our objetive, if the mahine wants to read k input symbols from ell i atonseutive times, it �rst erases the memory ells between i and i + k, and writes a ′|′ at ell

i + k. It then returns to ell i, and enters a speial state t. While in this state all it does is reada symbol 0 or 1 from the input tape, and print 0̂ or 1̂, respetively, on the memory tape. Thingshave now been arranged so that the sequene of symbols printed moves one step to the rightwith eah time step, making room for the new symbol, and this ontinues until k symbols havebeen read. At that point the segment [i; i + k − 1] is �lled with 0̂'s and 1̂'s, and the rightmosthas ome up against the �stop� symbol; this transmutes the symbols to ordinary symbols andfores the mahine out of the state t and into the state s, at whih point it resumes its usualoperation, but has at its disposal the k symbols of input reorded to its right on the memorytape.We introdue one more modi�ation: the mahine may also run on �nite tapes, i.e. tapeswhih extend only a �nite distane to the right. We enable the mahine to detet when it is nearthe right side of the tape, and use this in its deision proedure. We note that we have usedmemory to the right of a ell to store the input data aptured at that ell, and this won't worknear the right edge of the tape, but one easily introdues a similar proedure, whose details weomit, whih uses memory to the left of the ell. We remark that this feature will be used whenwe run mahines that need to read data from the entire width of their �nite tape several times.If not for this, we ould just have de�ned that the mahine halts when it tries to store data o�the right end of the tape.We all mahines of the type above, whih are Turing mahines whih an run on �nitetapes and are apable of apturing k bits of input in real time for arbitrary k, real-time Turingmahines. Together with the previous disussion, we have proved the following theorem:



ON THE DYNAMICS AND RECURSIVE PROPERTIES OF MULTIDIMENSIONAL SYMBOLIC SYSTEMS 19Theorem 4.5. Let T be a real-time Turing mahine with input language Σ, and let X ⊆ ΣZ
3be an SFT. Then there is an SFT Z superimposed over W × X so that (w, x) ∈ W × X isrepresented in Z if and only if, for eah retangle R of dimensions m × n indued by w, whenthe mahine T is run and input data de�ned by the array x|R, it runs at least n steps or leavesthe region [1; m] in less than n steps.We remark that any ordinary Turing mahine an be implemented trivially as a real-timeTuring mahine by simply not using any of the added funtionality.5. Realizing EDS as subations of SFTs and sofi shiftsIn this setion we prove theorems 1.4 and 1.6. We begin with theorem 1.4, whose proof isslightly easier.5.1. Realizing ESSs as subations of so� shifts. We prove theorem 1.4 for Z-systems,that is, we show that every one-dimensional ESS (= expansive EDS) is the subation of a 3-dimensional so� shift. The proof of the general ase is very similar, requiring one to de�nehigher-dimensional analogues of the retangular partitions desribed in the previous setion,and a de�nition of Turing mahines with multidimensional tapes. These modi�ations arestraightforward, and in the interest making the presentation readable we omit them.Let L ⊆ Σ∗ be a RE set of �nite sequenes over Σ; we are out to realize the system SL ⊆ ΣZas the subation of a 3-dimensional so� shift. We will do so for the subation generated by thetransformation T̃ = Te1+e2+e3

.Let Y ⊆ ΣZ
3 be the shift of �nite type de�ned by the onditions y(u) = y(u+e1) = y(u+e3) for

u ∈ Z3, so symbols are onstant in diretions e1 and e3. Let π : Y → ΣZ be the map (πy)(n) =

y(ne2); a moment's re�etion shows that π onjugates (Y, T̃ ) to the full one-dimensional shiftover Σ. Let YL = π−1(SL).Let W be the system de�ned in setion 4.4, and set Z0 = Y × W . For a retangle R =

{k} × I × J and y ∈ Y we de�ne π′
R(y) ∈ Σ∗ to be the word of length |I| indued by y on thebottom row of R, that is: (π′

Ry)(i) = y(ke1 + ie2) for i ∈ I. See �gure 5.1We now superimpose a layer over Z0 whose objet is to �kill� points (y, w) ∈ Z0 with y 6∈ YL.This is done using theorem 4.5, utilizing the retangles R indued by w to represent runs ofTuring mahines whih use as input the pattern π′
R(y) indued by y on the bottom edge of theretangle, and use the vertial (e3) diretion to represent time (sine symbols in Y are onstantin the e3 diretion, the input does not hange in real-time, and we may use �traditional� Turingmahines).The mahine we run on the retangles performs the following omputation: it generates theelements of L one after the other (this an be done by the assumption that L is RE), and foreah word it heks if the word appears in the input. We denote the resulting SFT by Z.We laim that the e�et of this is that (y, w) is represented in Z if and only if y ∈ YL. Bytheorem 4.5, we need to hek that if y ∈ YL then in every retangle the mahine does not haltin fewer steps than the height of the retangle, and that if y 6∈ YL then there is some retangle
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Figure 5.1. The on�guration of stripes indued by Y on one of the retanglesindued from W . The shades of gray represent symbols on planes perpendiularto e2 (or densities of symbols in the onstrution of setion 5.3for whih the mahine will halt in fewer steps. The �rst statement is obvious. As for the seond,for any subword of π′(y), orresponding to the word y|{0}×I×{0} for a �nite segment I ⊆ Z,there are translates of I in the diretion e1 ontained in retangles of arbitrarily large widthand of height arbitrarily large as a funtion of the width; this follows from the seond partof proposition 4.3. The word indued by y on this translate is the same as the original word.If the word is in L, then when the width and height are large enough the mahine will haltprematurely.One must be a little autious regarding the analysis above, sine it depends on the implemen-tation of the algorithm the mahine is running. It is important that the mahine �rst alulatethe n-th disallowed word, and only then hek it against its �input�. Given n, this �rst stage(where we ompute the n-th word of L) uses some amount of memory and time whih dependsonly on n and not on either the dimensions of the retangle or the input, and therefore anbe performed on any retangle whih is wide and high enough. On the other hand, the seondstage (where we hek if the word appears in the input) requires an amount of memory whihdepends only on n, and time whih depends only on n and on the width of the retangle, so



ON THE DYNAMICS AND RECURSIVE PROPERTIES OF MULTIDIMENSIONAL SYMBOLIC SYSTEMS 21it an be performed on any su�iently wide retangle as long as the height is su�iently largeompared to its width. These observations imply that if π′(y)|I ontains the n-th disallowedword, then there is a retangle wide enough and high enough for this to be disovered.This ompletes the proof of theorem 1.4, sine YL is a so� shift via the Z3-fator map Z → YLwhih forgets the seond oordinate (the W -oordinate) and the mahine symbols (we need onlyre-parametrize the ation to transform T̃ into T e1). More is true: as we show next, this map,whih is automatially a fator map also with respet to the ation of T̃ , is an ATIE with respetto the T̃ -ation. This proves a speial ase of theorem 1.6 for ESSs.To see that the fator map is an ATIE with respet to T̃ , note that we have the sequene offators
Z → YL × W → YL(the �rst map forgets the Turing mahine symbols, and the seond fators onto the �rst oordi-nate). Sine (W, T̃ ) is an almost-1-1 extension of an isometri system, in order to dedue that

Z → YL is ATIE we need to show that Z → YL × W is an ATIE with respet to T̃ . To seethis, merely note that given (y, w) ∈ YL ×W , the superimposed layer representing the mahinerun is ompletely determined on �nite retangles; it is undetermined only on in�nite retangles(atually, only on retangles whih are in�nite in the −e2 or −e3 diretions). However, thisours with probability 0 for any T̃ -invariant measure by orollary 4.4. Hene Z → YL × W isalmost-1-1 with respet to T̃ , and we are done.5.2. The Striped System. We need one more auxiliary onstrution. Let Ω̂2 be the systemde�ned in setion 4.3. In [HM07℄ it was shown how to superimpose a layer over Ω̂2 in suh away that eah row is olored 0 or 1, the rows whose oordinates are in Jr+1 \ Jr all have thesame olor, and any ombination of olors ours subjet to these restritions; in partiular ifthere is a row not of the above type it may have any olor; there is at most one suh row (in[HM07℄ this was done with olumns in plae of rows, but the modi�ation is trivial). We denotethis system S and all it the striped system. The main property of this system that we will useis that, to eah s ∈ S, there is assoiated the density δ(s) of 1's, whih is well de�ned, and if shas a unique binary representation then the n-th digit in its binary expansion is a 1 if and onlyif the rows with oordinates Jn+1 \Jn are marked 1. It was shown in [HM07℄ that for any s ∈ Sand any ε > 0 one an estimate δ(s) with error ε ∈ (0, 1) by observing the 0, 1-pattern induedby s on any vertial segment {i}×J , as long as |J | > 10/ε. We also note that if we �x 0 < δ < 1with unique binary representation, then the set Sδ = {s ∈ S : δ(s) = δ} is a losed subset of S,and the projetion from it to Ω̂2 is 1-1 exept when the image ontains an exeptional row, inwhih ase the projetion is 2-to-1 (beause the only thing not determined is the olor of thatrow).Finally, we note that in [HM07℄ the oloring on rows in S was performed in suh a way that,given the oloring of rows, all other auxiliary symbols were determined.5.3. Realizing EDSs. For simpliity of notation we prove theorem 1.6 for d = 1. Let X ⊆

({0, 1}N)Z be an e�etively losed subsystem and let U1, U2, . . . be a reursive sequene of ylinder



22 MICHAEL HOCHMANsets whose union is the omplement of X . More preisely, we are given an algorithm whih, oninput k, outputs a funtion c : I → C, where I ⊆ Z is �nite and C is the parametrized family ofylinder sets in {0, 1}N, suh that x ∈ Uk if and only if x(i) ∈ c(i) for i ∈ I.The method of realizing X as an ATIE of the subation of an SFT is similar to that in setion5.1. We will onstrut a 3-dimensional SFT Y so that the on�gurations indued by y ∈ Y oneah translated plane
Fn = spanZ{e1, e3} + ne2enodes an in�nite sequene sn = (sn(1), sn(2), . . .) ∈ {0, 1}N (rather than a single symbol asin the expansive ase), and we will want this to be done in a manner whih is invariant to theshifts Te1

and Te3
. Assuming we have suh a representation, we an de�ne π : Y → ({0, 1}N)Zby π(y) = (sn)n∈Z; this is a fator map from (Y, T̃ ) to ((ΣN)Z, T1), where T̃ = Te1+e2+e3

. Then,as in the expansive ase, we will superimpose another layer whih kills all points y ∈ Y whihdon't map to X under π.There are many ways to extrat a sequene (sn(i))∞i=1 from a two-dimensional on�gurationon Fn: the trivial one is to �x an enumeration of the elements of Z2 and use this to identifyeah on�guration in Fn with an element of ΣN. This solution will not work for us for tworeasons. First it is not invariant to Te1
, Te3

. Furthermore, in order to perform the seletionstage of our strategy we will need the information enoding the sequene in eah plane Fn tobe �spread all over�; this is beause eah run of a Turing mahine has aess to only a smallregion of spae, and from this sample it must extrat su�ient information about the enodedsequenes to make its deision. To aomplish both invariane and redundany, we enode asequene in on�gurations by using densities of symbols. By making the distribution of symbolsin Fn's su�iently uniform we an guarantee that the on�guration on the intersetion of eahlarge enough retangle with Fn gives su�ient information to deode inreasingly long portionsof the enoded sequene.Here are the details. We start with the 2-dimensional system Ω̂2 of setion 5.2, and extendit to a 3-dimensional system by sending eah 2-dimensional on�guration ω ∈ Ω̂2 to the three-dimensional on�guration w whih is onstant in the diretion e2, and on F0 the pattern isobtained from ω by identifying the diretion e1 ∈ Z2 with e1 ∈ Z3, and e2 ∈ Z2 with e3 ∈ Z3;that is, for eah ω ∈ Ω̂2 a point y is de�ned by
y(ie1 + je2 + ke3) = ω(i, k)This de�nes a three-dimensional SFT whih we denote Y0. In partiular, olumns in Ω̂2 orre-spond to lines in diretion e3 in Y0. Also, the T̃ -ation on Y0 is an almost-1-1 extension of anisometri ation.Next, in eah plane Fn we extend the on�guration to a striped system as in setion 5.2;we allow the stripes of eah translate of the xz-plane to be olored independently. Due to theembedding of Z2 in Z3 whih we have hosen, stripes now form lines in the diretion e1. Denotethe resulting system by Y .



ON THE DYNAMICS AND RECURSIVE PROPERTIES OF MULTIDIMENSIONAL SYMBOLIC SYSTEMS 23For y ∈ Y we denote by δn(y) the density of 1's ourring in the plane Fn, so δn(T̃ y) =

δn+1(x). The pattern indued by x on Fn allows us to reover δn(y); this information an alsobe obtained from the pattern indued on any vertial line (i.e. in diretion e3) ontained in
Fn, and furthermore in order to reover δn(y) up to an error of 2−k it su�es to examine thepattern on any vertial segment of length e.g. 2k2 in Fn.We will use δn(y) to assoiate a sequene sn of 0's and 1's to y|Fn

. The most straightforwardway to do this would be to set sn to the digits of the binary representation of δn(y), but then werun into ambiguities related to the non-uniqueness of binary expansions of dyadi numbers. Toavoid this, we do not de�ne this assoiation y|Fn
7→ sn for every y ∈ Y , but rather only for those

y's suh that for every n, the binary expansion of δn(y) is of the form δn(y) = 0.b10b20b30 . . .for some sequene bi ∈ {0, 1}. The set Y ′ ⊆ Y so that δn(y) is of this form for all n is a losedsubset of Y , though not an SFT. For onveniene, to eah y ∈ Y \Y ′ we de�ne δn(y) = 0, 0, 0, . . .for all n.Let π : Y → (ΣN)Z denote ontinuous shift-ommuting map y 7→ (δn(y))n∈Z from (Y, T̂ ) to
(ZN)Z. We now superimpose another layer over Y whih kills points outside of Y ′ and alsopoint from Y ′ whih do not projet into X under π. As in the expansive ase, we �rst take theprodut of Y with W , and over this produt we superimpose another layer whih represents therun of a Turing mahine over retangles indued by W . We use real-time mahines as desribedin setion 4.6, whih allows the mahine to read arbitrarily long vertial segments of data fromthe Y -layer. See �gure 5.1.The mahine implements the following algorithm. We denote by yR the two-dimensionalarray of input symbols on a retangle R, whih in our setting omes from the restrition of apoint y ∈ Y to a retangle R indued by some w ∈ W . The rows of yR represent the inputat a given time and the vertial one represents passage of time. The algorithm iterates overintegers k ∈ N2 in some order, and for eah k it applies the given algorithm whih alulates
Uk. Suppose Uk is the basis element spei�ed by a �nite subset I ⊆ Z and c : I → C, where C isthe olletion of ylinder sets in {0, 1}N. Assume that eah ylinder set c(i), i ∈ I is de�ned byindies in a set J ⊆ [1; m] ⊆ N. Next, the algorithm iterates over the tape, and at the i-th ellit aptures 2m2 vertial bits from its input, and does this also for ells i+1, i+2, . . . , i+ |I|− 1.This data su�es to determine, up to m bits, the densities δj(y) of the planes Fj to whih theells i, i + 1, . . . , i + |I| − 1 belong. If these �nite expansions are not of the form 0.b10b10 . . . thealgorithm halts. Finally, with the information at hand the algorithm an determine whethersome translate of Uk intersets the projetion under π of the urrent point, and if the answer isa�rmative the algorithm halts.As before, to make this work we assume that the mahine �rst alulates Uk and only thenheks it against its �input�. This �rst stage uses some amount of memory and time whihdepend only on k, and therefore an be performed on any wide enough retangle. Again, theseond stage requires an amount of memory depending only on k, |I|, |J | and time whih isadditionally a funtion of the width of the retangle, so an be performed on any retanglewhose height is su�iently large ompared to its width. These observations, and the fat that
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W indues admissible partitions, imply that every subword enoded by a point in Y will beheked by some mahine run in some retangle.The above implies that if we let Z denote the resulting SFT then it onsists of extensions ofpairs (y, w) with y ∈ Y ′ and suh that y projets to X via π.To omplete the proof we must verify this projetion is an ATIE with respet to T1. As atthe end of setion 5.1 we have map τ : Z → Y whih is an ATIE with respet to its image, butinstead of the image of τ being the sought-after system, as in setion 5.1, we now must projetone more time, using the map π : τ(Z)→ Y . But this map is also an ATIE, beause we anbreak it into

τ(Z) ∼= X × Y0 → X × U → Xwhere the �rst map ats oordinate-wise as the identity on the �rst omponent and as the ATIE
Y0 → U on the seond, where U is an isometri system; and the seond fator map is projetiononto the �rst omponent. Finally, sine the omposition of ATIEs is an ATIE, we are done.5.4. Variations. With a little more e�ort the equiontinuous system that appears in the ATIEof theorem 1.6 an be made to be transitive, i.e. an odometer. This an be ahieved if, insteadof the systems Ωp whih we onstruted in setion 4.3, we work with systems in whih thespetrum of T1 and T2 ome from distint primes. In this ase the ation of Tu for u 6∈Ze1∪Ze2will be transitive, i.e. an odometer. We omit the details.We also note that other types of substitution systems may be used instead of odometers. Forthe dynamial possibilities this provides see [Moz89℄.6. Construtions and ounterexamples6.1. The Relation Between subations of SFTs and Limit Sets of CAs. There is alose onnetion between the ation of a CA on the natural extension of its limit set, and one-dimensional subations of SFTs and so� shifts: given a system belonging to one of these lassesone an onstrut a member of the other lass whih aptures most of the dynamis of theoriginal system.In order to go from a CA f ating on ΣZ

d to an SFT, one onsiders the subshift X ⊆ ΣZ
d+1de�ned by the property that x ∈ X if and only if x|{i+1}×Zd = f(x|{i}×Zd) for every i ∈ N,where we identify on�gurations on {i}×Zd with on�gurations on Zd in the obvious way. Sine

f ats by a loal rule this system is an SFT, and sine for x ∈ X the sequene of on�gurations
(x|{n}×Zd)n∈Z onstitutes a two-sided f -orbit, the subation (X, T1) is isomorphi to the naturalextension the ation of f on its limit set.To go the other way, suppose that X = SL ⊆ ΣZ

d is an SFT de�ned by a �nite set L ⊆ ΣEof disallowed patterns, E ⊆ Zd �nite (a standard argument shows that every SFT is of thisform). We onstrut a d-dimensional CA whih has similar dynamis to (X, T1). We do thisby introduing a �destrutive� symbol whih omes into being at sites where the SFTs rules arebroken, and �spreads�; and on the other hand the CA ats like T1 on legal on�gurations. To be



ON THE DYNAMICS AND RECURSIVE PROPERTIES OF MULTIDIMENSIONAL SYMBOLIC SYSTEMS 25preise, let ∗ be a symbol not appearing in Σ and let ∆ = Σ∪{∗}. De�ne a CA f : ∆Z
d

→ ∆Z
dating on x ∈ ∆Z

d aording to the rules:
• If x(u) = ∗, or x(u ± ei) = ∗ for some i = 1, . . . , d, or (Tux)|E ∈ L, then (fx)(u) = ∗;
• otherwise (fx)(u) = x(u + e1).Note that X ⊆ ΣZ

d

⊆ ∆Z
d , and the restrition of f to X ats like the shift T1. On the otherhand, if x ∈ ∆Z

d

\ X then fx ontains a ∗ and this symbol will spread: for any u ∈ Zd we willhave (fnx)(u) = ∗ for all large enough n. Hene the on�guration onsisting of ∗'s is the uniqueattrating point of ∆Z
d

\X under f . It follows that the only nontrivial dynamis of f an ourin X , where f ats like T1.6.2. Systems whih annot be realized as subations. In this setion we present someexamples of systems whih annot be realized as subations of SFTs or so� shifts. The �rstlass of examples are the odometers, de�ned as equiontinuous, transitive ations on in�nitespaes. There exist EDS of this type: it is easy to hek that the map x 7→ x + 1 on the groupof 2-adi integers is an EDS. As is well known, every automorphism of this system is also givenby a translation. Thus if this system ould be realized as a subation of a Zd-ation it wouldfollow that the Zd ation is itself an equiontinuous ation; and it is well known the any subshifton whih the shift ats isometrially is �nite, a ontradition.Sine a diret proof is not long we inlude it.Proposition 6.1. Odometers annot be realized as the subation of a symboli system.Proof. Suppose to the ontrary that U ⊆ ΣZ
d for some d and (U, T ) is an odometer for T = T1(the proof for T = Tuis the same). Fix a ompatible metri on U and hoose ε > 0 so that

d(u, u′) < ε implies u(0) = u′(0). It is well known (and not hard to hek) that for every ε′ > 0there is an n > 0 so that d(T n
1 u, u) < ε′ for every u ∈ U , and in partiular this holds for ε′ = ε.Now for any u ∈ U we see that for v ∈ Zd we have

d(Tvu, T n
1 (Tvu)) < εso u(v) = u(v + ne1). This holds for all v ∈ Zd, so as a on�guration in ΣZ

d we have that
u has period n in diretion e1, hene the ation of T1 on it is periodi. But this is impossiblebeause a transitive isometri ation is minimal and therefore, if it's in�nite, annot have periodipoints. �Next, we exhibit an ESS whih is not the subation of an SFT, although by theorem 1.4 itsurely is a subation of some so� shift. Reall that the (topologial) Chaon system is obtainedby the following proess. De�ne words an ∈ {0, 1}∗ by setting a1 = 0, and given an de�ne
an+1 = anan1an, so

a2 = 0010 , a3 = 0010001010010 . . .The Chaon system X ⊆ {0, 1}Z is the subshift suh that a �nite word appears in X if and onlyif it appears in some an.



26 MICHAEL HOCHMANThe ondition that a word appear as a subword of some an is deidable. Indeed, it is easy toshow by indution that for eah k, every an for n ≥ k is a onatenation of the words ak and
ak1. Thus if b is a word whose length does not exeed that of ak, then b is a subword of anif and only if it is a subword of akak or of ak1ak. It follows that the set of subwords of X isreursive, so X is an ESS.We remark that this argument an be applied to show that many other onstrutions insymboli dynamis give ESSs; it works for any expliit onstrution by blok onatenation.Proposition 6.2. Let Z be an SFT suh that the subation (Z, T1) fators onto the Chaonsystem (X, T ) via π : Z → X. Then |π−1(x)| > 1 for almost every x ∈ X with respet to theunique invariant probability measure on X. In partiular, (X, T ) is not the subation of an SFT.Proof. Let X0 ⊆ X be the Gδ subset of points with a unique pre-image, and let µ be the uniqueinvariant measure on X , whih is ergodi. Note that X0 is invariant under T , so µ(X0) = 0 or
1. Assume that µ(X0) = 1. Let µ̃ denote the lift of µ to π−1(X0), so µ̃ is an invariant measureon Z, and it is the only one sine any other invariant measure would have to be supported on
Z \ π−1(X0), hene would projet under π to an invariant measure on X supported on X \X0,hene is di�erent from µ, a ontradition.Eah of the shifts Ti maps µ̃ to a T1-invariant measure, so by uniqueness of µ̃ we see that
T2, . . . , Td at as automorphisms on the measure preserving system (Z, µ̃, T1). By a theorem ofdel Juno [dJ78℄, µ (and hene µ̃) has minimal self joinings, and in partiular has no non-trivialautomorphisms. Thus for µ̃-almost all z ∈ Z the shifts Ti at as powers of T1. Hene for a �xedtypial z0, we have Tiz0 = T

n(i)
1 z0 for i = 2, 3, . . . , d and some integers n(2), . . . , n(d).The group Zd is generated by T ′

1 = T1, T
′
2 = T

−n(2)
1 T2, . . . , T

′
d = T

−n(d)
1 Td, and the Zd-ationthey generate on X is also an SFT, so by this re-parametrization of the ation we may assumethat n(2) = . . . = n(d) = 0. Now the ation on z0 is trivial for T 2, . . . , T d. Let R > 0 be themaximum diameter of a pattern de�ning Z (with respet to this new parametrization). Sinethe alphabet is �nite we an �nd m < n so that z0((m + i)e1) = z0((n + i)e1) for 1 ≤ i ≤ R,and hene z0((m + i)e1 + u) = z0((n + i)e1 + u) for any u ∈ spanZ{e2, . . . ed}.Write k = n − m; it follows that the point z1 de�ned by z1(
∑d

i=1 siei) = z0(s
′
1e1) for

s′1 = s1 mod k belongs X , sine we are merely �gluing� together patterns on strips of the form
[m; n + R − 1] × Zd−1, the gluing taking plae along the boundary of depth R, on whih thepatterns agree.For the point z′ we now have that z′(u) = z′(u + ke1) for any u ∈ Zd, i.e. it is periodi inthe e1-diretion. Hene its image in X is as well. But the Chaon system does not ontain anyperiodi points, being in�nite and minimal; a ontradition. �This proof works generally for any Zk-system X with trivial entralizer.It remains an interesting open question whether the Chaon system an our as a �nite-to-one fator of the subation of an SFT. Another is whether a uniquely ergodi subation of anSFT an be measure-theoretially isomorphi to the Chaon system.



ON THE DYNAMICS AND RECURSIVE PROPERTIES OF MULTIDIMENSIONAL SYMBOLIC SYSTEMS 277. Entropy7.1. Entropy. The entropy of a dynamial system is a non-negative number measuring theasymptoti rate of growth of the number of distint orbits at smaller and smaller sales. Ade�nition for the general setting may be found in [Wal82℄. For our purposes the entropy of asubshift X ⊆ ΣZd may be de�ned by
h(X) = lim

n→∞

1

|Fn|
log #{a ∈ ΣFn : a appears in x}where Fn = {1, 2, . . . , n}d is the d-dimensional ube of side n. This limit an be shown to existand onverges to its limit from above, and is dereasing along the sequene n = 2k, k = 1, 2, . . ..To de�ne entropy for a totally disonneted system X , let P1,P2, . . . be a re�ning se-quene of losed and open partitions of X whose union, together with all shifts of atoms bythe ation, separates points in X . Let Xn be the symboli fator de�ned by Pn (that is, if

Pn = {An,1, . . . , An,k(n)}, then Xn ⊆ {1, . . . , k(n)}Z
d suh that y ∈ Xn if and only if there issome x ∈ X with T ux ∈ An,y(u) for u ∈ Zd). Then h(X) = limh(Xn).Entropy is an isomorphism invariant. If Y → X is a fator then h(Y ) ≥ h(X), and h(X×Y ) =

h(X) + h(Y ). Also if X ⊆ Y is a subsystem than h(Y ) ≥ h(X). If X1 ⊇ X2 ⊇ . . . are symbolisystems then h(Xn) ց h(∩Xn). The entropy of a non-invertible system is the entropy of thenatural extension of the original system.There is a notion of entropy h(µ) for invariant measure µ on X , and the variational priniplegives the relation h(X) = supµ h(µ), where µ ranges over all invariant probability measures on
X (see [Wal82℄). This is true also for non-invertible systems.Applying the above we see that if X is an SFT and f is the CA assoiated to X in setion6.1, then h(X, T1) = h(Λ, f), where Λ is the limit set of f . To see this, note that exept for theDira measure on the �xed point, there is a 1-1 orrespondene between f -invariant measureson Λ and T1-invariant measures on X , and orresponding measures are isomorphi, so have thesame entropy. Sine the measure on the �xed point has entropy 0, the laim follows.7.2. A haraterization of the entropy of EDS. In this setion we prove theorem 1.8:
h ≥ 0 is the entropy of an EDS if and only if it is the lim inf of a reursive sequene, orequivalently, there is a reursive array (m, n) 7→ hm(n) ∈ Q with hm(n) ց hm ր h. Tosee that lim inf an has this form when (an)∞n=1 is reursive, de�ne the reursive array hm(n) =

min{am, am+1, . . . , am+n}. The other diretion is slightly more involved, and we refer the readerto [ZW01℄.To simplify notation we give the proof for Z-systems; the multidimensional ase is similar.Let us �rst show neessity, whih is the easier diretion. Denote by Σ∗ the set of �nite wordsover Σ. Reall that h ∈ R is right-reursively enumerable if there is a reursive sequene an ∈ Qwith an ց h. De�ne SL for in�nite sets L in the same way as in setion 1.1.Lemma 7.1. If L ⊆ Σ∗ is RE, then h(SL) is right-reursively enumerable



28 MICHAEL HOCHMANProof. Let a1, a2, . . . be a reursive sequene with L = {an : n ∈ N}. Let Nn,m denote thenumber of patterns a ∈ Σ2n whih do not ontain any of the words a1, a2, . . . , am. Then
hn,m = 1

2n log Nn,m is a reursive array, and by enumerating the pairs (m, n) and taking theminimum of hm,n for initial segments of this enumeration, we see that h = infm,n hm,n is rightreursively enumerable. We laim that h = h(SL). Clearly ≥ holds. On the other hand,
hn,k → h(S{a1,...,an}) as k → ∞ by [Fri97℄ or [HM07℄. Therefore h ≤ infn h(S{a1,...,an} = h(SL)as desired. �Returning to the general (non-expansive) ase, let X be an EDS. Let Pn be a reursivesequene of re�ning partitions separating points in X ; suh a sequene learly exists. Let Xn bethe fator de�ned by Pn. By proposition 3.3 and the previous lemma h(Xn) is right reursivelyenumerable, but an inspetion of the proof of the lemma shows that the reursive sequeneof numbers desending to h(Xn) an be omputed from Pn and the e�etive data de�ning X(see proposition 3.3). In other words, we an ompute a reursive array (m, n) 7→ hm(n) with
hm(n) ց h(Xm) ր h(X). This proves one diretion of theorem 1.8.Before proving the opposite diretion, we demonstrate the tehnique in a simpler ase.Lemma 7.2. Let h be a right reursively enumerable number; then there exists an ESS X with
h(X) = h.Proof. We may assume that 0 < h < 1, sine we an inrease entropy by integer inrements bytaking produts with full shifts.For a word a ∈ {0, 1}ℓ, de�ne Nk(a) to be the number of distint subwords of length k in
a. Given a dereasing reursive sequene of numbers 0 < h(n) < 1 with h = limh(n) > 0, wede�ne a sequene of numbers ℓ(n) reursively by

ℓ(1) = 2

ℓ(n + 1) = ℓ(n)ℓ(n)and for n ≥ 2 de�ne sets Ln ⊆ {0, 1}ℓ(n) by
Ln = {a ∈ {0, 1}ℓ(n) : Nℓ(k)(a) > ℓ(k) ·

⌈
2h(k)·ℓ(k)

⌉ for some k < n}Clearly if a 6∈ Ln and k < n then a|I 6∈ Lk for any segment I of length ℓ(k). It follows that SLnis a dereasing family of subshifts. Set L = ∪Ln; this is learly an RE set. Let X = SL = ∩SLn
.We laim that h(X) = limh(n).Indeed, the inequality h(X) ≥ h follows from the fat that we an onstrut a subshift

X0 ⊆ X with entropy h. To do this selet ⌈
2h(1)·ℓ(1)

⌉ bloks of length ℓ(1). Form all possibleonatenations of ℓ(2)/ℓ(1) of these bloks; this gives a olletion of ⌈
2h(1)·ℓ(1)

⌉ℓ(2)/ℓ(1) of bloksof length ℓ(2), none belonging to L2. Choose a subset of size ⌈
2h(2)·ℓ(2)

⌉ of these bloks � thefat that the h(i) dereases means that there are enough bloks to do this � and again form allonatenations of length ℓ(3)/ℓ(2) of them, arriving at a olletion of ⌈
2h(2)·ℓ(2)

⌉ℓ(3)/ℓ(2) bloks



ON THE DYNAMICS AND RECURSIVE PROPERTIES OF MULTIDIMENSIONAL SYMBOLIC SYSTEMS 29of length ℓ(3) none of whih belong to L3; et. Taking the limit of these olletions of bloksgives a subshift X0 ⊆ X with entropy h.For the other diretion we rely on an empirial version of the Shannon-MaMillan-Breiman,theorem 2.2 of [OW90℄, whih states that if (ξn)∞n=1 is a typial sample from a �nite valuedproess with entropy t, then for all ε > 0, all M su�iently large and all N ≥ MM , oneannot over 1− ε of the word ξ1ξ2 . . . ξN with a olletion of less than 2M(t−ε) words of length
M ; hoosing a large enough n we an take M = ℓ(n) and N = ℓ(n + 1), and we get that
ξ1ξ2 . . . ξN ∈ Ln+1. Now suppose by way of ontradition that h(X) > h. By the variationalpriniple there is an invariant measure µ on X with entropy > h and the support of µ ontainspoints ontaining subwords belonging to some LN , and this is impossible, in ontradition tothe Ornstein-Weiss result. Hene h(X) ≤ h. �We now turn to the proof of su�ieny in theorem 1.8. Suppose that (n, k) 7→ hn(k) isreursive, that hn(k) ց hn and that hn ր h. We may assume without loss of generality that
hn+1(k) ≥ hn(k), sine we an always replae hn(k) with maxm<n hm(k). As before, we mayalso assume that 0 < h < 1. We an further assume that 0 < hn(k) < 1. We are out to onstrutan EDS X = X(h) with entropy h.We desribe an e�etively losed subset of ({0, 1}N)Z, whih we think of as the spae ofolorings of Z×N, by speifying a sequene of disallowed 2-dimensional patterns of retangularshape. For a retangular pattern a ∈ {0, 1}[1;m]×[1;n] we think of it as a word of length m overthe alphabet {0, 1}n and de�ne Nk(a) as above; i.e. Nk(a) is the number of distint sub-patternsof a of the form a|[i,i+k]×[1;n] (for the purpose of ounting we identify patterns whih di�er onlyup to a translation).De�ne ℓ(m) as in the proof of lemma 7.2, i.e. ℓ(1) = 2 and ℓ(m + 1) = ℓ(m)ℓ(m). De�nelanguages Ln,m ⊆ ({0, 1}n)ℓ(m) by
Ln,m = {a ∈ ({0, 1}n)ℓ(m) : Nℓ(k)(a|[1;ℓ(m)]×[1;i]) > ℓ(k)·

⌈
2hi(k)·ℓ(k)

⌉ for some k < m and i ≤ n}Let L be the union of the Ln,m together with all translates of patterns from this union in the
Z-diretion (that is if a pattern a ∈ {0, 1}[1,m]×[1,n] is in the union then so are all translates ofit on retangles [i, i + m] × [1; n]). This is learly an RE set. Let X be the omplement of theorresponding ylinder sets in ({0, 1}N)Z; this is an EDS.If we onsider the partition Pn of X aording to the pattern indued on {0} × [1; n] thenthe resulting symboli system Xn has entropy hn, as an be seen from the lemma above. Sinethe sequene Pn is reursive, and together with all translates generates the topology of X , wesee that h(X) = limh(Xn) = h, as desired.8. Fatoring SFTs onto Full ShiftsWe next prove proposition 1.10, whih answers question 2.10 of [BS07℄. We refer to [BS07℄for bakground. Our onstrution is based on the following lemma:



30 MICHAEL HOCHMANLemma 8.1. There is a uniquely ergodi ESS X ⊆ {0, 1}Z suh that the frequeny of 1's ineah point x ∈ SL is 1/2, and suh that for every integer r > 0 there is an n and a blok a oflength n appearing in X, suh that
#{i : a(i) = 1} <

(n − 2r)3

2n3Proof. We brie�y sketh the onstrution, whih is by blok onatenation. We de�ne pairs ofwords ar, br ∈ {0, 1}k(r) reursively, satisfying the following properties:(1) ar, br are onatenations of ar−1, br−1, and ontains both as subwords.(2) The frequeny of 1's in ar is < (k(r) − 2r)3/2k(r)3 and in br is > (k(r) + 2r)3/2k(r)3,and the sum of these frequenies is 1/2.(3) for r ≥ 3, for every word w of length < k(r− 2), and any two subwords c′, c′′ of ar, br oflength k(r − 1), the frequenies of the ourrene of w in c′ and in c′′ di�er by at most
1/r.Here wi means the onatenation of w with itself i times. We begin with k(1) = 3 and a1 = 000,

b1 = 111, and it is easy to hek that given ar−1, br−1, the hoie ar = (am
r−1b

m
r−1)a

n
r−1 and

br = (br−1ar−1)
mbn

r−1 will satisfy these requirements for suitably hosen large integers m > n(whih may depend on r).A standard argument now shows that one-sided in�nite sequenes a, b whih are the limits of
ar and of br, respetively, have the same forward orbit losure, whih is uniquely ergodi with
1's appearing with frequeny 1/2. Now take the natural extension. The fat that this is an ESSis lear, and given r, the desired blok is ar (with n = k(r)). �Let Y ⊆ {0, 1}Z

3 be the subshift obtained by extending eah point on X in diretions e2and e3 (that is: y ∈ Y if and only if for some x ∈ X we have y(i, j, k) = x(i) for all (i, j, k).Thus (Y, T1) ∼= (X, T ). By theorem 1.4 and its proof, Y is a so� shift and there is an SFT Zand Z3-fator map π : Z → Y so that the extension Z → Y is ATIE with respet to T1. Inpartiular, h(Z) = 0 with respet to the Z3-ation.We may assume that π is a 1-blok ode, so eah symbol in Z ontains a omponent from Y 'salphabet and π simply forgets all other information. Starting with Z, superimpose 4 symbolsover the ourrene of 1's in Z (these are the 1's oming from Y ), with no restritions onon�gurations, and all the resulting system W . Sine the density of 1's in Y is 1/2, we have
h(Ŷ ) = log 2. Write π : W → Y as well. As in [BS07℄, we observe that there is a uniqueinvariant measure µ on W with entropy log 2, and if µ =

∫
µydν(y) is the disintegration of

µ over Y then for ν-a.e. y ∈ Y , the measure µy is obtained by uniformly and independentlyhoosing the symbol over eah 1 in y.We shall show that no fator map exists from W to the full shift. Indeed, suppose f : W →

{0, 1}Z
3 were a fator map given by a sliding blok ode with radius r. As in [BS07℄, for a typial

y ∈ Y the measure µy must map under f to the uniform Bernoulli measure on {0, 1}Z
3. Nowsine y is typial we an, using the properties of X , hoose a large ube Q ⊆ Z3of dimensions

n×n×n, so that the density of 1's in y|Q is < (n− 2r)3/2n3. Thus the entropy of the measure
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µy with respet to the partition aording to symbols in Q is < log 4 · (n− 2r)3/2. But beausethe window width of f is r, for any w ∈ W the values of w|Q ompletely determine the pattern
f(w)| bQ, where Q̂ is the ube obtained by deleting from Q every point within r of the omplementof Q, in the ℓ∞ metri. But the uniform measure on {0, 1}Z

3, when restrited to the oordinates
Q̂, has entropy |Q̂| · log 2 ≥ log 4 · (n − 2r)3/2; a ontradition. This ompletes the proof of the�rst part of the proposition.On the other hand, it is not hard to expliitly onstrut a non-trivial, uniquely ergodi subshift
X ⊆ {0, 1} with 1's appearing with density 1

2 and suh that if we extend the one-dimensionalsubshift by adding one of four random olors over eah 1, the resulting system fators onto thefull shift {0, 1}Z. Starting now from a uniquely ergodi zero entropy 3-dimensional SFT whosesubation fators onto X , the same proess gives a subshift that fators onto {0, 1}Z
3.To onstrut suh a system X , pik any uniquely ergodi ESS whose points are onatenationsof the words a = 111000 and b = 110100 with equal frequenies (for example, repeat theonstrution of lemma 8.1, starting with a1 = a and b1 = b). Let A ⊆ {a}×{0, 1, 2, 3}6 be thosepairs where (a, a′) ∈ A if and only if (a(i) = 0) ⇒ (a′(i) = 0), and de�ne B ⊆ {b} × {0, 1, 2, 3}6similarly. Note that |A| = |B| = 26. If Y ⊆ X ×{0, 1, 2, 3}Z is the subshift obtained by oloringthe 1's in X arbitrarily with 0, 1, 2, 3 and oloring the 0's with 0, then eah point in Y is theonatenation of words from A and B. We an de�ne a fator map π : Y → {0, 1}Z whih, for

(x, x′) ∈ X×{0, 1, 2, 3}Z, �rst identi�es the intervals I so the a|I = a or b (these are determineduniquely and loally), and then at so that π(x.x′)|I = π0(y|I), where π0 is an arbitrary funtionso that π0|A and π0|B are bijetions to {0, 1}6.9. Disussion and ProblemsIn this setion we ollet some omments and questions regarding this work. We have seenthat the lass of subations of SFTs are very rih; almost as rih as the ategory of generale�etive dynamis. This re�ets the rihness of the full dynamis. Another indiation of thisrihness is Simpson's work [Sim07℄, where the ompliations are of a more reursive-theoretinature.A major hallenge is to understand the full dynamis. One approah is to try to ontrol thefull dynamis via subations; this is the approah taken in [HM07, BS07℄. Some informationan be obtained diretly from the fat that the system is e�etive; theorem 4.1 of [HM07℄ is astep in this diretion, but this gives rather poor information.A reasonable intermediate step towards the full dynamis might be to omplete the pitureof the Zd−1-subations Zd-SFTs; these are e�etive but our onstrutions do not work for them.Problem 9.1. Charaterize the Zd−1 subations of Zd-SFTs and so� shifts.Even with regard to the Zd−2-subations there are some interesting questions of a topologialnature. It would be desirable, for example, to get extensions whih are smaller then ATIEs.Problem 9.2. Can every EDS be realized as a �nite-to-1 fator of the subation of some SFT?



32 MICHAEL HOCHMANAnother interesting question is the following:Problem 9.3. What are the expansive subations whih an our for SFTs, partiularly indimension 2?Suh systems are losely related (though more ompliated than) expansive ellular automata,on whih some progress has been made in the one-dimensional ase [BM97, BM00, Nas08℄.One an also use the reursive-theoreti approah to di�erentiate between potentially tratablesystems and intratable ones (e.g. systems with nontrivial Medvedev degree). Two importantlasses of systems at opposite ends of the dynamial spetrum are the strongly irreduible SFTsand the minimal SFTs (minimal means every orbit is dense). For X in these lasses the globallyadmissible patterns an be deided, i.e. the extension problem an be solved for them. Forstrongly irreduible systems this was demonstrated in [HM07℄; sine the proof for minimal SFTsis short we inlude one here (We note that related results have been proved independently in[DKB06℄):Proposition 9.4. There is an algorithm whih, given a �nite set L of patterns de�ning anon-empty minimal SFT and a pattern b ∈ ΣF , deides whether b appears in SL or not.Proof. The algorithm is as follows: For eah n enumerate all [−n; n]d-patterns a1, . . . ak(n) whihdo not ontain patterns from L. If ai|F 6= b for all i = 1, . . . k(i), output that b does not appearin X , and halt. If, on the other hand, b ours in all ai's, output that b appears in SL, and halt.To see that this algorithm halts, note that if b does not appear in SL then by ompatnessthe �rst alternative will eventually hold; otherwise b appears in SL, so the seond alternativewill eventually our, sine if it does not then again by ompatness there is a point in x notontaining b, ontraditing minimality of X . �It is important to note that we assume SL is nonempty; in general, it annot be deidedwhether SL is empty or not.This reursive-theoreti property of minimal and strongly irreduible SFTs severely limits theappliability to them of the methods presented here. In fat, it seems that any sheme whih triesto use su�iently strong omputation (e.g. Turing mahines) to introdue dynamial featuresinto SFTs must fail to produe SFTs in these lasses, sine suh a sheme would probably allowus to leave the reursive universe.The following basi problem undersores the ontrast between what we an onstrut ingeneral and in the minimal ase. Reall that the universal Zd-odometer is a minimal Zd-ationon the Cantor set whih fators onto every Zd-ation on a �nite abelian group, and suh fatorsseparate points. This system is unique up to isomorphism. Using our results one an onstrutan SFT that fators onto the universal odometer but this SFT will be far from minimal; it willnot even be transitive.Problem 9.5. Is there a minimal SFT extending the universal odometer?
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