ON THE DYNAMICS AND RECURSIVE PROPERTIES OF
MULTIDIMENSIONAL SYMBOLIC SYSTEMS

MICHAEL HOCHMAN

ABsTrACT. We study the (sub)dynamics of multidimensional shifts of finite type and sofic
shifts, and the action of cellular automata on their limit sets. Such a subaction is always
an effective dynamical system: i.e. it is isomorphic to a subshift over the Cantor set the
complement of which is a recursive sequence of basic sets.

Our main result is that, to varying degrees, this recursive-theoretic condition is also suffi-
cient. We show that the class of expansive subactions of multidimensional sofic shifts is the
same as the class of expansive effective systems, and that a general effective system can be
realized, modulo a small extension, as the subaction of a shift of finite type or as the action
of a cellular automaton on its limit set (after removing a dynamically trivial set).

As applications, we characterize, in terms of their computational properties, the numbers
which can occur as the entropy of cellular automata, and construct SFTs and CAs with

various interesting properties.

1. INTRODUCTION

1.1. Background. Let X be a finite set of symbolic and let %' be the compact space of
configurations, i.e. of Y-colorings of Z%. This space is the full shift, and Z% acts on it by the
translations{T, },cz« given by (T, (2))(v) = z(v +u), v € Z4.

By a d-dimensional pattern over ¥ we mean a Y-coloring of a finite subset of Z¢. If L is a
finite set of patterns then they define a shift of finite type (SFT) by

S, ={zx € $%° . 1o element of L appears in x}

here, a pattern a € XF is said to appear in a configuration z if (T,,x)|r = a for some u € Z.
The set Sy, is easily seen to be closed and invariant under the shift action, so may be regarded
as a Z%dynamical system. Background on topological dynamics can be found in section 2.

If A is some other finite alphabet and Y C AZ" is a subshift which is the factor of an SFT,
then Y is called a sofic shift.

SFTs and sofic shifts have been studied in topological dynamics, physics and computer science
as models for interacting systems, and in dimensions d > 2 they are capable of very complex
behavior. Indeed, not only are these systems hard to analyze but most questions about them are

formally intractable, in the sense that, for most non-trivial questions, there is no algorithm which
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decides them given a finite presentation of the system as input. [Ber66, Rob71, Hur87, HKC92,
Kar94|. The recursive structure of SFTs is also known to be complex [Mye74, Hur90, Sim07].
One can nonetheless ask meaningful questions about the dynamics of SFTs and sofic shifts.
Research in this direction has been motivated by questions from particle physics and crys-
tallography, and also by the mathematical theory of one-dimensional SFTs and sofic shifts,
which are in many respects quite well understood. Many striking examples have emerged, e.g.
[Moz89, BS94|, and also the feeling that almost anything can happen for higher dimensional

SEFTs. Below we show that in a certain precise sense this is true.

1.2. Effective systems and subactions of SFTs and sofic shifts. In this work we study
SFTs and sofic shifts through their subactions, by which we mean the restriction of the Z%-action
to a subgroup H < Z®. We are interested in understanding what dynamics can arise in this
way.!

It turns out that to a large extent the subdynamics can be characterized, and the characteri-
zation is recursion-theoretic. This is another example of a general philosophy that has emerged
recently: for many characteristics of these systems there is a trivial restriction of a recursive
nature, and this turns out to be the only restriction. An example of this is our work in [HMO07],
where the entropies of SF'Ts and sofic shifts are characterized. Another example is the Medvedev
degree invariant introduced by Simpson [Sim07].

To state our results we require some definitions. A sequence (a,) of integers is recursive (R)
if there is an algorithm A (formally a Turing machine) that, upon input n € N, outputs a,.
A set of integers is recursively enumerable (RE) if it is the set of elements of some recursive
sequence.

By identifying the integers with other sets we can speak of recursive sequences of other
elements. For example, since N 22 N? (and the bijection can be made effective), we can speak of
recursive sequences of pairs of integers; and in the same way of sequences of finite sequences of
integers.

Let {0,1}" denote the Cantor set and for a finite I C N and a € {0, 1} let

[a] = {z € {0,1} : z|; = a}

denote the cylinder set determined by a. As a ranges over all finite patterns of this sort, [d]
provides a basis of closed and open sets for the topology. Notice that the set of such a’s, which

parametrizes the cylinder sets, can be put into effective bijection with N.

Definition 1.1. A subset X C {0,1}" is effectively closed if its complement is the union of a

recursive sequence of cylinder sets.?

ISince passing to finite index subgroup action on an SFT is still an SFT, and similarly for sofic shifts, it is not
important which subgroup we consider, and in formulating our results we will take the canonical Z*-subgroups
of Z% generated by the first k of the standard generators ey, ..., eq of Z%.

2An effectively closed set is also the complement of the union of a recursive set C of cylinder sets, i.e. there is an
algorithm that decides in finite time whether a given cylinder set [a] is in C. This condition is a-priori stronger
and we thank S. Simpson for pointing this equivalence out to us.
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Since there are only countably many recursive sequences, there are only countably many
effectively closed sets.

We may similarly define effectively closed subsets of the Cantor set when parametrized as
S%" for arbitrary finite 3, or closed subset of ({0,1}¥)2°. Let T, denote the shift actions on

these spaces.

Definition 1.2. A subset X C X%2° (X finite) is an effectively symbolic system (ESS) if it is
effectively closed and invariant under the shift.

A subset X C ({0, 1}N)Zd is an effectively dynamical system (EDS) if it is effectively closed
and invariant under the shift.?

We will also say that a dynamical system is effective if it is isomorphic to an ESS or EDS.

Once again, both these classes are countable; but we know of no “natural” type of dynamics
of subshifts or totally disconnected systems which cannot arise as ESSs or EDSs, respectively.
Indeed, all combinatorial constructions which appear in the literature give systems of this type,
assuming they are defined by recursive parameters (for example, Sturmian sequences will be
ESSs if the rotation and partition used are computable). We note that an expansive EDS is
(isomorphic to) an ESS, and every ESS is (isomorphic to) an EDS (though an ESS can also be
embedded in ({0,1}M)%" in a non-effective way).

If L is a finite set of patterns then the set of all translates of patterns from L is an RE set,
and thus the SFT Sy, is an ESS. A symbolic factor of an ESS is an ESS, so sofic shifts are ESSs;
and the subaction of an EDS is an EDS (we prove both these statements in section 3). This

provides a restriction on the subdynamics of SFTs:
Theorem 1.3. The subaction of an SFT or sofic shift is an EDS.

This necessary condition turns out to be (almost) sufficient. We have the following charac-

terization of the expansive subdynamics of sofic shifts:

Theorem 1.4. A symbolic system is isomorphic to the subaction of a sofic shift if and only if

it is effective.

Specifically, we can realize a ZF-ESS X as the ZF-subaction of a ZF*2 sofic shift; in fact,
the Z**2 subshift obtained by extending each configuration in X identically in the directions
ki1, €ryo complementary to the subgroup Z*, is a sofic shift. We do not know whether either
of these statements holds when k + 2 is replaced with &k + 1.

The analog of theorem 1.4 is false for SFTs. Indeed, there are ESSs which cannot be realized
as subactions of SFTs; such as the Chacon system (see proposition 6.2 below). It is an interesting
open problem whether one can characterize the expansive subactions of SF'Ts.
3Equivalently, a Z%system is an EDS if it is the inverse limit of a recursive sequence of ESSs. For a system X,
this means that X is the inverse limit of a diagram

e X % X1 — .. — Xo

where X,, C ({0, l}m)Zd and (a) there is a recursive array am,n of patterns with am,., having symbols in {0, 1},
such that Xy = S{q,, , :neny, and (b) the sequence my, is recursive (note that they are block codes).
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Let us now turn to the non-expansive case of EDS. Note that in order for an EDS to occur
as the subaction of an SFT or sofic shift, it must first of all arise as the subaction of some ESS.
This is a non-trivial restriction, since not all EDS have this property; for example, there exist
effective odometers, and these do not arise as the subaction of any symbolic system, effective
or not (see section 6.2). There are also other obstructions; for example, the topological Chacon
system is not the subaction of an SF'T, though it is an effective symbolic system and therefore
is the subaction of a sofic shift. See section 6.2.

These problems disappear if one is willing to allow a small extension. We shall say that a
factor map 7 : Y — X is almost-1-1 if the set of points in X with unique pre-image has full
measure with respect to every invariant Borel probability measure on X.* Although weaker
than isomorphism, this relation implies that the statistical behavior of the systems Y and X
are identical in a strong sense: T  induces a bijection of the invariant probability measures on X
and Y, and for every invariant measure v on Y the factor map is a continuous isomorphism of
(Y,v) and (X, 7v).

Another type of extension Y — X which may be considered trivial occurs when Y extends
X by a direct product with a well-understood system, that is, Y = X x W, and the factor is
projection onto the first coordinate. We will deal with the particularly simple case where W is

an isometric action on a totally disconnected space.

Definition 1.5. An extension Z — Y of Z*-dynamical systems is an almost trivial isometric

extension (ATIE) if we can interpolate a factor
Z =Y xW-—=Y

where W is an isometric action on a totally disconnected space, Z — Y x W an almost-1-1

extension, and Y x W — Y is projection onto the first coordinate.

The composition of ATIEs is an ATIE, and ATIEs do not increase topological entropy. The
invariant measures of a system and an ATIE extension of it differ by at most the addition of
some pure-point rational spectrum, and for this reason and those explained above ATIEs can be
considered small from the point of view of the ergodic behavior of orbits. We remark, however,
that from a purely topological point of view many properties are not preserved by ATIEs, such
as transitivity, expansiveness and equicontinuity.

Our main result for SFTs is:

Theorem 1.6. The subaction of an SFT is an EDS. Conversely, if Y is an effective Z*-system,
then there is an SFT X and a ZF-subaction of X which is an ATIE of Y.

As before, we can prove this with X a k+2-dimensional SFT; we do not know if the dimension
can be reduced to k + 1. We have quite good control of the isometric part of the ATIE, and
can make it an odometer. On the other hand, the almost-1-1 part of the extension partly comes
4Note that the set of points in X with unique pre-image is a Gs-set. Some authors define almost-1-1 extensions

by the condition that this set is dense. This notion is distinct from ours, though in the presence of a globally
supported invariant measure, and in particular when X is minimal, our definition implies the other.
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from the dynamics of a certain Turing machine associated to the EDS, and we have little control
over it. We mention that the SFT X which we construct in the proof has entropy 0 with respect
to the full Z*+2-action.

It is not clear how far one can reduce the size of the extension in theorem 1.6. We show in
proposition 6.2 below that if the subaction of an SF'T factors onto the Chacon system then, with
respect to the unique invariant probability measure on the factor, almost every fiber contains
more than one point, and in particular the extension cannot be almost-1-1. It remains an inter-
esting question whether every effective system has a finite-to-1 extension that is the subaction
of an SFT.

1.3. Cellular automata. A cellular automaton (CA) is a continuous transformation f : I
SZ° of the full shift (with ¥ finite), which commutes with the shift action in the sense that
T.f = fT, for u € Z%. The Curtis-Hedlund-Lyndon [Hed69|theorem characterizes such maps as
those which are defined locally: the site win f(x) is determined by the coloring of a neighborhood
of u in x, and the size of the neighborhood is independent of z. This makes CA an attractive
discrete model for interacting systems. CAs were introduced in the 1940’s by von Neumann
[VN66]. They were popularized by J. Conway in the 1970’s with the introduction of his “Game
of Life”, and in the 1980’s by the work of Wolfram [Wol84]. The recursive properties of CA have
been studied by several authors [Hur87, CHY90, Hur90, Kar94, Sut05]|, and as for SFTs, most
properties are undecidable. See [Kar05] for a recent survey.

The limit set of a CA fis A = ﬂz":lf”(EZd); this is the largest set on which f acts surjectively.
In order to get an action which is also injective, we pass to the natural extension (A*, f*) of
(A, f), i.e. the inverse limit of the diagram ... Loa LA L 0L A This is the smallest
invertible system extending (A, f); we call (A*, f) the limit Z-action of f.

The classes of limit Z-actions of CA and of Z-subactions of SF'Ts are closely related; they are
essentially the same after removing the unavoidable periodic point from the limit sets of CAs.

See section 3 for details. Using this, theorem 1.6 gives

Theorem 1.7. The limit Z-action of a CA is an EDS. Conversely, if Y is a Z-EDS, then there
is a 3-dimensional CA [ such that, after removing from its limit Z-action a fized point and its

basin of attraction, the remaining system is an ATIE of Y.

We do not know to what extent theorem 1.7 holds in dimension 1 and 2, or what analog there

may be for one-dimensional CA and for injective or surjective CAs in any dimension.
1.4. Applications.

Entropy of CAs. Entropy is perhaps the most important invariant of a dynamical system (see
section 7.1 for definitions). It has been known for some time that, in general, one cannot compute
the entropy of an SFT or CA from its combinatorial description. For SETs this follows from
Berger’s theorem [Ber66], and for CA was proved by Hurd, Kari and Culik [HKC92].

We are interested in a somewhat different question, namely, what are the possible numbers

that can arise as the entropy of SF'T subactions and CAs; a-priori there are only countably many
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such numbers, and for SFTs in dimension 1 they have a simple algebraic characterization [Lin84].
In [HMO7], we recently proved the following recursive-theoretic characterization of entropies of

higher dimensional SFTs:

Theorem. [HMO07] Fiz d > 2. Then a real number h > 0 is the entropy of a Z*-SFT if and

only if it is the infimum of a recursive sequence of rational numbers.

This is actually the same class of numbers which arises as the entropies of ESSs. In a similar

vein, we can now prove the following:

Theorem 1.8. For each d > 1, a real number h > 0 is the entropy of a Z-EDS if and only if

it is the liminf of a recursive sequence of rational numbers.
Applying theorem 1.8, and the fact that ATIEs do not increase entropy, we get:

Corollary 1.9. For d > 3, the entropies of d-dimensional CA are precisely the non-negative

numbers that are the liminf of a recursive sequence of rational numbers.

Real numbers with various recursive properties have been studied in [ZWO01], where a count-
ably infinite hierarchy of number types is described. Let us mention here one interesting fact;
the class of number which are entropies of EDS (and hence of CA) contains numbers which are
not the limit of any recursive sequence (in contrast, the entropies of SFTs always are). Thus
the entropy of some CAs is truly out of reach. This sharpens a theorem of Hurd, Kari and
Culik [HKC92], who showed that the function f +— h(f), which assigns to a CA f its entropy,
cannot be approximated. What we now know is the stronger fact that not only can the function
not be approximated, but there are individual values which in a very strong sense cannot be
approximated.

It is an interesting open problem to characterize the entropies of CA in dimensions 1 and 2.

Measures of mazimal entropy on SFTs. Interest in measures of maximal entropy on SFTs is
motivated by the study of phase transitions in particle physics, and there are by now several
examples of SFTs with multiple measures of maximal entropy [BS94, QS03].

Theorem 1.6 gives a general mechanism for producing SFTs whose measures of maximal
entropy behave in various ways. Given a zero-entropy SFT Y C Ezd, Yo € ¥ and k € N,
define an SFT W by superimposing one of k new symbols over each symbol in ¥g; formally,
take the SFT W CY x {0,1,...,k — I}Zd defined by the condition that (y,y’) € W if and only
if ¢/ (u) = 0 whenever y(u) ¢ Xo. We call W the k-extension (with respect to Xg). Then

h(W) = max{pu( U [0]) -logk : p an invariant probability measure on W'}
€%
and the measures of maximal entropy are in 1-1 correspondence with the measures maximizing
the quantity above (this approach was used in [HMOT], but the control there over Y was poorer).
One should note however that this technique cannot produce irreducible (or even mixing) ex-
amples, since in the procedure described the system we get factors onto Y, which, using our

present techniques, always has some discrete spectrum.
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Another interesting consequence for CA is that, since there are Z-EDS without measures
of maximal entropy, there must be 3-dimensional CA with this property as well. This is not

otherwise obvious.

Factoring relations. A problem which has received some attention recently is that of determining
the factoring relations between SFTs, and particularly the question whether every SFT with
entropy > log N factors onto a full shift on N symbols [JM05]. Using the technique above
and results from [HMOT7], Boyle and Schrauduner recently showed that this is false. As another

application, we answer question 2.10 of [BS07], albeit in three rather than two dimensions:

Proposition 1.10. There is an SFTY C Y2 with entropy log 2 which does not factor onto the
full shift {0, I}ZS, and it can be obtained as a 4-extension of a uniquely ergodic SFT with respect
to a set of symbols Xo having density 1/2. On the other hand, there is an infinite, uniquely
ergodic SF'T and a set of symbols of density 1/2 whose 4-extension does factor onto the full shift
on N symbols.

1.5. Organization. The rest of this paper is organized as follows. In the next section we give
some background in topological dynamics. In section 3 we discuss some general properties of
EDS and prove theorem 1.3. In section 4 we describe some auxiliary constructions, and in
section 5 we construct sofic shifts and SFTs with specified dynamics, proving theorem 1.4 and
1.6. In section 6 we discuss the relation between CAs and subactions of SFTs, proving theorem
1.7, and give some (counter-)examples. In sections 7 we discuss entropy of EDS, and in section

8 we prove theorem 1.10 about the factoring of SF'Ts onto full shifts.

Acknowledgement. 1 am grateful to Benjamin Weiss for many interesting and stimulating dis-

cussions. I also thank the referee for a careful reading and helpful suggestions.

2. TOPOLOGICAL DYNAMICS

We collect here some standard definitions from topological and symbolic dynamics.

A topological Z?-dynamical system (X, T) (sometimes written (X,Z%)) is an action of Z¢ by
homeomorphisms {7}, },cz¢ on a compact metric space X; in this paper we assume that X is
totally disconnected. Two dynamical Z%-systems (X, T) and (Y, S) are isomorphic, or conjugate,
if there is a homeomorphism 7 : X — Y satisfying S,7 = 7T, for u € Z%. If 7 is merely onto
then it is called a factor map from X to Y, and X is called an extension of Y.

Let ¥ be a finite set of symbols. The space N2 of colorings of Z¢ by ¥ is called the
full d-dimensional shift over 3, or just the full shift, and its points are called configurations.
Topologically the full shift is a Cantor set, and it comes equipped with a natural Z? action,
called the shift action, in which u € Z¢ acts via the translation T, : Y2 5 ¥2° defined by

(T2)(v) = o(u +v)

We let eq, . . ., eq denote the standard generators of Z%, and write T}, . .., T, for the corresponding

shift elements.
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A subset X C ¥%° which is closed and invariant to the shift (ie. T,X = X for u € Z%) is
called a subshift, or a symbolic system.

By the Curtis-Hedlund-Lyndon theorem [Hed69], factor maps between subshifts of the same
dimension (but possibly distinct alphabets) are given by a block code: if Y C Azd, X c 2
and 7 : Y — X is a factor map, then there is a finite ' C Z¢ and a function 7y : A¥ — ¥,
so that 7 acts on each site of z € AZ’ by applying 7y to the local neighborhood of the site:
(rx)(u) = mo((Tyzx)|r). The diameter of F is called the window size of m. Conversely, any
such map 7o : A — ¥ gives rise to a factor map = in this way (the image is automatically a
subshift).

The property of (X,T) being isomorphic to a subshift can be characterized intrinsically: it
is equivalent to being totally disconnected and expansive, i.e. there is some € > 0 such that, for
any x # y, there is some u € Z¢ such that 6(T,z, T,y) > €, where d is some fixed metric (but
the condition does not depend on the metric). See [Wal82].

3. BASIC PROPERTIES OF ESSs AND EDSs

In this section we develop some general properties of EDS, in the course of which we will

prove theorem 1.3.
Theorem 3.1. A subaction of an effective system is effective.

Proof. Let X C ({0, l}N)Zd be an effectively closed subset, invariant under the Z%-shift action,
and let H < Z¢ be a subgroup. Let K C Z? be a recursive cross-section of the projection
7% — 7%/H. Then
({0, 13" = ({0, 1)

and the homeomorphism is effective (it is induced by a computable identification of (N x K) x H
with Nx Z%). Thus the recursive set of cylinder sets which together constitute the complement of
X in ({0, l}N)Zd is a recursive set of cylinder sets with respect to the new parametrization, and
shows that X is an effective (and clearly shift-invariant) subset of ({0, 1}M"*%)# | as required. O

Since an SFT is an ESS, theorem 1.3 follows immediately for SF'Ts. To obtain the same
for sofic shifts we first need a classical fact from recursion theory. Recall that a set A C N is

recursive if there is an algorithm that, given n € N, decides whether n € A.

Lemma 3.2. Suppose L C U is an RE set and R CU x V is a recursive set, and let
M={beV : (a,b) € R for somea € L}

Then M is RE.

Proof. Let A be an algorithm that on input @ € U halts if @ € L and runs forever otherwise.
Let B be the algorithm which, upon input b € V| iterates over all pairs (n,a) € N x U, and for
each pair runs the algorithm A for n steps (or until it halts) on the input a. If A halts before n

steps are up, it checks whether (a,b) € R, and if so it halts; otherwise it continues to the next
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pair (n’,a’). It is easily seen that this algorithm halts on input b if and only if b € M, so M is
RE. O

Proposition 3.3. A symbolic factor of an EDS is an ESS.

Proof. Let Y C ({0,1}Y)2" be an EDS and Uy, Us, ... a computable sequence of cylinder sets
whose union are the complement of Y. Let Z C 2% be a subshift and 7 : Y — Z a factor map.
We must show that Z is effective.

For each o € ¥ let C, = {z € ¥° : 2(0) = o} and let V, = 7~1(C,). Each V, is closed
and open, so can be written as a finite union of cylinder sets. Thus we have a concrete, finite
representation of the factor map.

A cylinder set C C 2% intersects Z non-trivially if and only if for there is some y € Y with
7(y) € Z. By compactness, this occurs if and only if for each n there is a point y € Y so that
Ty € Vy(u for u € [-n; n]?. Therefore, C' is disjoint from Z if and only if for some n,

Yn ﬂ T™"Vow) = 0
u€[—n;n]d

which occurs if and only if for some n, k,

k
u€[—n;n]d i=1
In summary,

k
CNZ=0 < Ink () T Vow<JU
u€[—n;n]d i=1
Now, the relation on the right hand side is computable, since the Boolean operations between
cylinder sets are computable; hence by the preceding lemma, we see that the collection of cylinder

sets disjoint from Z is RE, as required. 0

Corollary 3.4. An expansive effective system is isomorphic to an ESS.

4. AUXILIARY CONSTRUCTIONS

In this section we describe some constructions which we use later on in the proof of theorems
1.4 and 1.6.

4.1. Superposition. Given an SFT X = S}, defined by a finite set of patterns L, superposition
is a combinatorial construction which gives an SFT X’ that factors into (generally not onto) X.
Informally, this is done by adding data to each symbol of X and enriching L with rules relating
to this new layer of data.

More precisely, suppose X is an SFT defined by a set L C X', A system Y is superimposed
over X if it is obtained by the following process. (a) Fix a finite set A, and replace each symbol
o € ¥ with one or more symbols of the form (0,0) € ¥ x A. Let ¥’ be the set of these pairs. For

the new symbol (o, ) € ¥/, we say that ¢ is superimposed over o; we also frequently refer to this
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pair as the symbol o marked with 6. (b) We extend each pattern a € L C ¥ in every possible
way to a pattern in a’ € (X')F" by superimposing new symbols over each symbol of a. (c) Let
L’ be the extended patterns from (b), together with possibly other patterns. Then the SFT X’
defined by L’ is superimposed over X, and has the property that every pattern appearing in X’
consists of a A-configuration superimposed Y-configurations from X.

Note that Sz, may be empty, but if it is not then the map = : X' — 2% which erases the
superimposed layer of data maps X’ to a subsystem of X. We say that x € X is represented
in X’ if one can turn z into a point of X’ by superimposing a suitable A-pattern over z; i.e., if

x = w(2') for some 2’ € X'.

4.2. Subshifts Defined by Substitution. One of the building blocks of our construction
will be certain SF'Ts whose configurations possess a simple hierarchical structure. We will not
need anything more complicated than Robinson’s classical aperiodic SFT [Rob71], but rather
than describe that system and the modifications we would require of it, we will instead rely
on a general construction due to Mozes [Mo0z89], which allows a shorter and more transparent
exposition.

For the remainder of this section we fix the dimension d = 2. Given a finite alphabet X, a
substitution rule is a map s : ¥ — X% for some integer k > 1, where Fy, = {1,...,k}? (in the
terminology of [Moz89), this is a deterministic k x k substitution system with property A). The
map s extends naturally to a map s, : ¥ — S by identifying Lk with (SFk)F.

Starting from a single symbol located at (1,1) € Z? and iterating the substitution map, we
obtain a sequence of colorings of Fy» for n = 0,1,2.... Such patterns are called s-blocks. A
point = € Y2 is admissible for s if every finite subpattern of z appears in some s-block. The
subshift W C ¥2% associated with s is the set of admissible patterns; this is seen to be closed
and shift invariant.

For each configuration z € W one can find a derivation tree of x. This is an infinite tree
whose node set V' is a disjoint union V = U2 ,V,,. Each V,, is identified with a k"-periodic
subset 17” C 7? (that is, a coset of k"Z2) in such a way that 170 =72 and I7n - 17n_1, and nodes
v € Vi, v € V1 are connected if o' € 6+ {0,...,k" — 1}2, where 6,9’ € Z? correspond to
v, v’ respectively. Each node in the tree also carries a label from X. A derivation tree for x € W
must, satisfy the condition that the labeling of \70 agrees with x, and for n > 0, every a € ¥
and each u € I7n labeled a, the labeling of the k& x k square of elements of 17"_1 of which u is
the lower left corner are labeled according to the block s(a). In other words, the labeling of i
corresponds to a decomposition of x into k x k blocks arranged in a grid, and then replacing each
block with the symbol from which it is derived; this gives a pattern on a coset of kZ x kZ, which
we may identify with a point in 222, decompose it into k x k blocks and repeat this procedure
to get the labeling of 172, and so on. One can prove by induction that a finite version of this
procedure can be carried out n times for each block s, (a), a € ¥; since each sub-pattern of x is
contained a block of this form, a compactness argument now shows that for any x € W these

finite derivations can be pasted together consistently, giving a derivation tree for z.



ON THE DYNAMICS AND RECURSIVE PROPERTIES OF MULTIDIMENSIONAL SYMBOLIC SYSTEMS 11

A substitution rule s has unique derivation if each z € X has a unique derivation tree. The
derivation tree need not be connected; a tree is connected if and only if every pair of vertices
have a common parent. However, it is easy to see that if C' is a connected component of the
tree then C'N 170 is either the whole plane, a half-plane or a quarter-plane, and hence there are

at most four connected components which meet along horizontal and/or vertical lines.

Theorem 4.1. (Theorem 4.5 of [M0z89]) Let s : ¥ — XF% be a substitution rule with unique
derivation and let W be the associated dynamical system. Then there exists an alphabet A,
an SFT W C AZ2, and a one-block factor map ¢ : W — W such that € W has a unique

pre-image under ¢ whenever the derivation tree of x is connected.
Note that theorem 4.1 is false in dimension d = 1.

Corollary 4.2. Let s be a substitution rule with unique derivation and ¢ : W — W as in theorem

4.1. Then ¢ is an almost-1-1 extension with respect to the action of Ty, for any u & Zey U Zes.

Proof. To any x € W let D, denote its derivation tree, and to = associate the collection
C,={Cn 170 : C'is a connected component of D, }

The function C' : = +— C, is measurable and takes on countable many values. Note that
according to our identification of tree nodes with points in the plane, the tree is acted on by the
shifts in a natural way, and in particular Cr,, = T,,(C,.), where T, acts on C, by shifting each
element of C,. If C, contains a half- or quarter-space then T"C, N C, = @ for n € Z, because
u & Zey U Zes; hence any T,-invariant measure gives mass 0 to those x with C, non-trivial.
Hence by the Poincare recurrence principle, the set of x’s with disconnected derivation tree
has measure zero for every T, -invariant probability measure on W, and the claim follows from
theorem 4.1. O

4.3. Almost Odometers. Fix 2 < p € N for the remainder of this section, and consider the
substitution s : {o, e} — {o, o}{1>""p}2 defined by the rule that maps e to a p x p block with e’s
on the diagonal in direction /" and o’s everywhere else, and maps o to the same block except

that the upper right corner is a o instead of a e. For p = 5 this gives the rule

o o ] ] [ ] o o ] ]
o o ] L] o ] o o L] ]
[ ] = o o L] O [¢] @] = [¢] o [ ] @] o
[e] [ ] @] ] [e] @] ° [e] O ]
[ ] o ] [©] o L] o o ] o

Let Q@ = Q,, denote the dynamical system defined by these rules. See figure 4.1 for three iterations
of the rule with p = 2.

Let us say that a row or column of an s-block is of type r if the e’s in it appear in an infinite
arithmetic progression with gap p”, and of type > r if it is of type ' for some 1’ > r; for finite

sequences we adopt the convention that a sequence of length n containing only one occurrence
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FiGURE 4.1. Three iterations of the substitution for p = 2.

of e has period n, and if it has no occurrences of e its period is co. One readily verifies by
induction that for each r > 1 and all sufficiently large blocks a € {s,(e), s, (o)}, the set

I.(a)={i : 1 <i<p" : the i-th column of a is of type > r}
is the intersection of [1;p"] with a coset of p"~'Z. Similarly the set
Jr(a)={i : 1 <j <p" : the j-th row of a is of type > r}

is the intersection of [1;p"] with a coset of p"~1Z.

We define I, (w), J,(w) similarly for infinite configurations w € €2, except that now a row or
column with a unique e is also considered type oco. It follows from the finite case that in the
infinite case I,., J, are cosets of p"~'Z.

Denote Zy = Z/kZ, and let Uy = Zyt X Ly, and let T1,T5 : Uy — Uy be the maps T (m,n) =
(m — 1,n) mod p* and Tx(m,n) = (m,n — 1) mod p’. We consider T}, T5 as the generators of
a free abelian group Z? acting on Uy, giving a Z2-dynamical system (the action of course is
not faithful). Let m; denote reduction modulo pt (we allow m; to act in the obvious manner on
elements of Z, Ly and Uy for t' > t). We obtain the following compatible sequence of factor
maps of Z? dynamical systems:

(4.1) LI § AL

Define 7, : Q@ — U, by
T (w) = (7 (Lrg1(w)), 7 (Jrg1 (w))
note that m,(,41) is well-defined because I, 1, J,+1 are p"-periodic, and that 7,1 o7, = 7,1

because the I,.’s and J,.’s are decreasing sequences. Note also that by definition

Ir (Tael-l-beg ’LU) = Ir —a

Jr (Tael-l-beg ’LU) = Jr —-b
so 7(Tyw) = T,7(w), where u € Z? and T, is the element of the appropriate Z?-action generated
by T1,T>. We see that the system of factors 7. : @ — U, is compatible with the maps m, :

Ury1 — U, so Q factors into the inverse limit of the sequence (4.1), which we denote by U.

Since the Z2-action on each U, is transitive (in the strict sense that every orbit is the entire
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space), we see that Q actually maps onto U. Denote the factor map thus defined by ¢ : Q — U.
Note that ¢(w) completely determines the sets I,.(w), J,(w)

With a little more work, we can show that ¢ is almost-1-1 with respect to the action of
T, for any u & Zey U Zes. In fact, another induction shows that given large n and a block
a € {sn(®),s,(0)}, the sets I. = I,_1 \ I, and J. = J,_1 \ J, uniquely determine the pattern
alr <. Now, for w € €, the point ¢(w) determines the sets I,.(w), J,(w), and these in turn
determine sets I, J! defined as above, and a|;/« is determined by ¢(w). Tt is easy to check
that Z \ U2, I} contains of at most one point i, and similarly Z \ U3, J/ contains at most
one point j., so w is determined by ¢(w) except possibly on the column {i.} X Z and the row
Z x{j.}. We call these the exceptional rows and columns, if they exist. The set of configurations
containing exceptional rows or columns is wandering with respect to the action of any T, with
u & Zey U Zes (the argument is similar to corollary 4.2), so for any T),-invariant measure on {2
almost every point is the unique pre-image of its image under ¢. We have shown that for such
u, (,T,) is an almost-1-1 extension of (U, Ty,).

Let Q = (AZp be the SFT cover of €, promised by theorem 4.1. The division of w €
into columns of type r + 1 but not r uniquely determines the locations of blocks of the type
sr(e) and s,(o) in w, because the right column/top row of these blocks can only be located on
columns/rows which are type r 4+ 1 but not r. This shows that s has unique derivation, and
it follows from corollary 4.2 that (Q,Tu) is an almost-1-1 extension of (£2,7,), and hence of
(U, Ty), for every u & Zey U Zes.

Finally, fix w € Q and a segment I C Z, and consider the segments I/, = I x {n} obtained by
embedding [ in Z? and translating it vertically a distance of n. Each I’ lies in a row of type r
for some r = r(n), and every r occurs as r(n) for some n. Now, it is easily seen that if a row
of type r contains a e in the i-th column then a row of a different type cannot contain a e in
this column. Hence I], can contain a e in column ¢ only when it intersects a row of type r but
not r — 1. Tt follows that for any |I| 4+ 1 distinct values of r, at least one of them is such that
when I}, is contained in a row of type 7 then it does not contain any e’s; in particular, one of
the segments 1)), I7, ..., I"I‘ contains no e’s. A similar statement holds for translates of {0} x I

in the ey direction.

4.4. Rectangular partitions of Z3. An important role in our constructions will be played
by Z3-SFTs whose configurations partition Z3 into rectangular regions in a special way. By a
rectangle we mean a set of the form {i} x I x J C Z3 where I, J C Z are segments of integers,
possibly infinite on one or both sides. Write H; = {i} x Z x Z, and identify configurations on
H; with configurations in Z?; thus for a rectangle {i} x I x J C H; we will say that |I| is the
width and |J| the height, and refer to ey as the horizontal direction and eg as the vertical one.

We next construct a Z3-SFT W and a factor map p from W into a subshift defined over the
alphabet {0, e}, such that for w € W the configuration p(w)|g, consists of rows and columns
of e’s, and all other symbols are equal to o. Such a configuration can be naturally interpreted

as inducing a partition of H; into rectangles, e.g. with the convention that the bottom and left
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borders of a rectangle belong to the rectangle, and the other borders do not. We call such a
configuration a rectangular partition.

We begin with the 2-dimensional SFTs Qg and §5 of the previous section, and extend each of
them to a 3-dimensional SFT as follows. We identify configurations of Qs with configurations
in the plane Z x Z x {0}, with e; € Z? identified with e; € Z3 and ey € Z? with e; € Z3, and

extend the symbols in the es direction; we obtain the system
Ws = {zex? : 3w e Q3 with 2(i,j, k) = w(i, §) for i,j,k € Z}

Similarly, we identify configurations of Q5 with configurations in the plane Z x {0} x Z, with
e1 € Z? identified with e; and ey € Z? with e3. We obtain the system

Ws = {z € 2%+ Jw € Q5 with x(i,7, k) = w(i, k) for i,j, k € Z}

We define W3, W5 similarly starting with 3, Q5; there are natural factor maps /1/173 — W3 and
/V[75 — W5 induced from the factor maps ﬁg — Q3 and 65 — (5, respectively. Both /V[73 and W5
are SFTs, and that the action of T, on each is an almost-1-1 extension of an isometric system
as long as u ¢ U?_, Ze;.

Let W = W5 x Ws, and define the factor map p on W so that p(w’,w”)(u) = e if and
only if one of the projections of w’, w” onto W3, W5, respectively, contains a e at u. Thus each

w = (w',w") € W induces, via p(w), a partition of Z® into rectangles. See figure 4.2.

Proposition 4.3. Let y = p(w) for some w € W.

(1) There are at most finitely many planes H; containing infinite rectangles in y.

(2) For each finite horizontal segment I C {0} x Z x {0}, each M > |I| and each N € N,
there is a translate of I in the direction ey which is contained in some rectangle R
induced from y, with width between M and M - 31142 and height > N.

Proof. The first statement follows from the fact that points in ﬁp contain at most one exceptional
row or column.

Next we verify the second statement. Fix a point w € W induced by a w’ € Q3 and w” € Qs,
fix asegment I C Z, M > |I|and N € N, and let I’ = {0} x I x{0}. A translate I’ +ne; is located
between two vertical lines in H,, at distance ¢ from each other if and only if {0} x I + ne; is in
a column in w’ between two e’s at distance ¢ apart. The fact that this holds for some translate
and M < ¢ < M - 311+2 follows from the remark at the end of section 4.3, and this occurs for
a set of n’s which has period 3* for some k. Similarly, a translate I’ + ne; is located in H,
between horizontal lines at distance > N from each other if and only if ne; is on a column in
w” between e’s at least > N apart. This occurs for a set of n’s with period 5™ for some m.

Since 3,5 are relatively prime, there is an n satisfying both simultaneously. O
From the first part of the proposition we deduce the following, as in corollary 4.2:

Corollary 4.4. For any u € Z3\ Hy and for any T, -invariant probability measure u on W, the
set of w such that p(w) contains infinite rectangles has p-probability 0.
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FiGURE 4.2. Two components of a point in W and an induced rectangle.

4.5. Turing Machines in Rectangles. The classical Turing machine is an automaton with
a finite number of internal states which reads and writes data on a one-sided infinite array
of cells indexed by N, called the tape. Each cell contains one symbol from a fixed alphabet.
The computation begins with the machine located at the 0-th (leftmost) cell and in a special
initial state, and the tape is initially blank, or contains some data which is the input to the
computation. The state of the tape along with the location and internal state of the machine
are called a configuration; a configuration uniquely determines all future configurations. The
computation proceeds in discrete time steps. At each iteration the machine is located at some
cell. The machine reads the symbol at its current positions and, based on this data and on
its internal state (and only on these parameters), it performs three actions: (a) it replaces the
current data symbol with a new one, (b) it moves one cell to the left or to the right, and (c)
it updates its internal state. The computation may halt after a finite number of steps if the
machine either moves off the tape (steps left at cell 0) or enters a designated state, called the

halting state. Barring these occurrences, the computation continues forever.
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Although a very simple model, any algorithm written in a modern computer programming
language can be implemented as a Turing machine, and it is generally accepted that any effective
computation can be performed by a Turing machine; this is Church’s thesis. For background
and basic facts on this subject, see [HUT9].

4.6. Representing Turing machines in SFTs. It is well known that one can use SFTs to
represent the runs of Turing machines. Given a machine 7', we first fix an encoding of the
configurations of the machine as bi-infinite sequences of symbols (mark the cells at positions
< 0 as “off limits” by using some special symbol), with each cell containing a symbol from the
tape alphabet and possibly the state of the machine, indicating that the machine is located
at that position. Now consider two-dimensional configurations in which each row represents
a configuration of the machine, and is obtained by iterating by one step the computation in
the row below it. The transition from row to row is determined locally, and can be encoded
in the rules of an SFT, giving a system whose configurations describe infinite computations of
the machine, assuming their rows represents states of the machine. To make this work one
must allow the initial configuration of the machine to remain unchanged so that it can extend
infinitely downward; then every infinite (non-halting) run of the machine can be represented as
a two-dimensional array in which the initial configuration occurs for all negative times, say, and
the computation starts at row 0; and no halting run can be represented. Of course, in addition
to arrays representing runs the SFT will also contain “pathological” configurations which do
not correspond to computations, such as configurations containing only data and no machine,
tapes with multiple machines, or computations which extend back in time indefinitely and do
not begin in an initial state.

If one wants better control of these matters, one can start with an “infrastructure” layer which
partitions space into rectangles, such as the SFT W constructed in the previous section. Then
we can superimpose a layer in which each rectangle represents a finite portion of a machine run
on the rectangle, with the lower border of each rectangle initialized to a blank tape and the
machine starting in the lower left corner in its initial state (this can be enforced by requiring
that the data superimposed over a point in one of the rectangular partition’s horizontal lines
is the “blank” symbol, and over the intersection of a horizontal and vertical line there must be
superimposed the machine in its initial state. Both these conditions are local). Note that we
still have no control over initialization of infinite rectangles.

A crucial observation is the following. If the machine halts on blank input, then sufficiently
large rectangles cannot be completed by this tiling scheme; since each configuration of W con-
tains arbitrarily large rectangles this means the system we have defined is empty. On the other
hand if the machine does not halt, then the system is not empty. One technical point to note is
that there are configurations containing rectangles much higher than they are wide. In this case
it can occur that the machine tries to move past the right border of the rectangle in the course
of the computation. If this occurs then no further changes occur in the configuration, since once

it is gone it cannot come back, but a pattern can still be superimposed over this rectangle. In
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this case the configuration on the rectangle does not coincide with the true computation viewed
through this rectangle, but this does not affect our previous analysis.

Following Robinson, this construction can be used to prove that it is undecidable whether an
SFT is empty. Indeed, it follows that if there were an algorithm for deciding emptiness of an
SET then we could use it to decide if a given Turing machine halts by constructing from 7" the

SEFT above and checking if it is empty.

4.7. Real-time Turing machines. It will be convenient for us to work with a slightly modified
model of a Turing machine, in which the machine also receives data in “real time” (that is, in the
course of the computation) from some external source. To model this we use machines which
have two tapes, the input tape, which the machine can read but cannot write to, and whose
state at each moment is determined externally and can change independently at each iteration
of the computation; and the memory tape, which is initially blank, and which behaves like the
ordinary tape: the machine can both read and write to it, and other than changes made by the
machine, it retains its data unaltered from step to step. There is still only one machine head,
which at each step reads a symbol from each of the tapes.

This model will occur in our construction as follows. We will start with the product W x
X, where X is some SFT, and superimpose a layer so that rectangles induced by W contain
representations of runs of a certain Turing machine of the modified type. Note that the rows of
each rectangle contain a row of symbols coming from the X component, and these will serve as
the data on the input tape, so successive rows in X provide successive rows of input. The memory
tape is simulated in the usual manner as part of the machine’s configuration, represented by
symbols from the superimposed layer.

In our application we will want the machine to be able to read (and store for later use) k
symbols from the i-th cell of the input tape in the course of k consecutive time steps, where i, k
are determined in the course of the computation. This cannot be implemented in the machine
model we have described, because after reading a symbol the machine must take time to store
it out of the way, and by the time it gets back to the i-th cell it will have missed one or more
input symbols, which are constantly changing.

However, we can implement this functionality in the SF'T representation with the following
trick. Assume for simplicity that the input language is {0,1}. We assume that the memory
language contains the symbols 0, 1, and in addition a pair of special symbols 6, 1. These special
symbols are not merely symbols, but are simple automata in their own right: when 0 or 1 appears
in the memory tape, it tends to move one step to the right with each time step, overwriting
whatever was there before (the cell it previously occupied becomes blank, unless written to by
the machine or moved into by another special symbol). The only thing that can stop a moving
special symbol is an ordinary symbol 0 or 1, or a special stop symbol ‘|’. When a moving symbol
0 or 1 comes up against a 0,1 or ‘|’ from the left it turns into an ordinary 0 or 1, respectively.
Furthermore this transformation is instantaneous: a special symbol cannot be the neighbor of

0,1 or ¢|’. Thus a change from special to ordinary symbol propagates instantly to the left. For
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example, if we have the sequence

on the memory tape, and z,y # 0, 1,6, T, |, then after one more time step we will have
xb011|

where b is the blank symbol. Breaking this down, what happened is that each of the special
symbols moved one step to the right (the rightmost one overwriting the y), came up against a
’I’, turned into a 1. Therefore its neighbor on the left turned into a 1 and the next symbol to the
left into a 0. This instantaneous transformation cannot be implemented in a one-dimensional
automaton on rows because it requires transmission of information across long distances, but
is easily implemented as part of the SFT rules. It is similar to the instantaneous machines of
Robinson [Rob71], and we omit the details. Finally, this instantaneous change will also affect
the machine’s state as follows: there is a special state s of the machine so that if the machine
was located at a cell containing a special symbol 0 or T, and in the next step its neighbor on
the right is 0,1 or ’|’, then the machine enters state s.

Returning now to our objective, if the machine wants to read k input symbols from cell i at
consecutive times, it first erases the memory cells between i and i + k, and writes a ’|" at cell
i+ k. Tt then returns to cell 7, and enters a special state t. While in this state all it does is read
a symbol 0 or 1 from the input tape, and print 0or T, respectively, on the memory tape. Things
have now been arranged so that the sequence of symbols printed moves one step to the right
with each time step, making room for the new symbol, and this continues until k£ symbols have
been read. At that point the segment [i;¢ 4+ k — 1] is filled with 0’s and T’s, and the rightmost
has come up against the “stop” symbol; this transmutes the symbols to ordinary symbols and
forces the machine out of the state ¢ and into the state s, at which point it resumes its usual
operation, but has at its disposal the k& symbols of input recorded to its right on the memory
tape.

We introduce one more modification: the machine may also run on finite tapes, i.e. tapes
which extend only a finite distance to the right. We enable the machine to detect when it is near
the right side of the tape, and use this in its decision procedure. We note that we have used
memory to the right of a cell to store the input data captured at that cell, and this won’t work
near the right edge of the tape, but one easily introduces a similar procedure, whose details we
omit, which uses memory to the left of the cell. We remark that this feature will be used when
we run machines that need to read data from the entire width of their finite tape several times.
If not for this, we could just have defined that the machine halts when it tries to store data off
the right end of the tape.

We call machines of the type above, which are Turing machines which can run on finite
tapes and are capable of capturing k bits of input in real time for arbitrary k, real-time Turing

machines. Together with the previous discussion, we have proved the following theorem:
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Theorem 4.5. Let T be a real-time Turing machine with input language X2, and let X C yz?
be an SFT. Then there is an SFT Z superimposed over W x X so that (w,z) € W x X is
represented in Z if and only if, for each rectangle R of dimensions m X n induced by w, when
the machine T is run and input data defined by the array x|g, it runs at least n steps or leaves

the region [1;m] in less than n steps.

We remark that any ordinary Turing machine can be implemented trivially as a real-time

Turing machine by simply not using any of the added functionality.

5. REALIZING EDS AS SUBACTIONS OF SFTS AND SOFIC SHIFTS

In this section we prove theorems 1.4 and 1.6. We begin with theorem 1.4, whose proof is

slightly easier.

5.1. Realizing ESSs as subactions of sofic shifts. We prove theorem 1.4 for Z-systems,
that is, we show that every one-dimensional ESS (= expansive EDS) is the subaction of a 3-
dimensional sofic shift. The proof of the general case is very similar, requiring one to define
higher-dimensional analogues of the rectangular partitions described in the previous section,
and a definition of Turing machines with multidimensional tapes. These modifications are
straightforward, and in the interest making the presentation readable we omit them.

Let L C ¥* be a RE set of finite sequences over ¥; we are out to realize the system S C %7
as the subaction of a 3-dimensional sofic shift. We will do so for the subaction generated by the
transformation 7' = Teitestes-

Let Y C S2° be the shift of finite type defined by the conditions y(u) = y(u+e1) = y(u+tes) for
u € Z3, so symbols are constant in directions e; and e3. Let 7 : Y — 3% be the map (7y)(n) =
y(nes); a moment’s reflection shows that 7 conjugates (Y, T) to the full one-dimensional shift
over . Let Y, = 7= (SL).

Let W be the system defined in section 4.4, and set Zy = Y x W. For a rectangle R =
{k} xI x Jand y € Y we define 75 (y) € £* to be the word of length |I| induced by y on the
bottom row of R, that is: (nRy)(i) = y(kei + iea) for i € I. See figure 5.1

We now superimpose a layer over Zy whose object is to “kill” points (y,w) € Zy with y € Y7,.
This is done using theorem 4.5, utilizing the rectangles R induced by w to represent runs of
Turing machines which use as input the pattern 7, (y) induced by y on the bottom edge of the
rectangle, and use the vertical (e3) direction to represent time (since symbols in Y are constant
in the es direction, the input does not change in real-time, and we may use “traditional” Turing
machines).

The machine we run on the rectangles performs the following computation: it generates the
elements of L one after the other (this can be done by the assumption that L is RE), and for
each word it checks if the word appears in the input. We denote the resulting SFT by Z.

We claim that the effect of this is that (y,w) is represented in Z if and only if y € Y. By
theorem 4.5, we need to check that if y € Y7, then in every rectangle the machine does not halt

in fewer steps than the height of the rectangle, and that if y ¢ Y7, then there is some rectangle
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Fi1GURE 5.1. The configuration of stripes induced by Y on one of the rectangles
induced from W. The shades of gray represent symbols on planes perpendicular
to es (or densities of symbols in the construction of section 5.3

for which the machine will halt in fewer steps. The first statement is obvious. As for the second,
for any subword of 7'(y), corresponding to the word y|{o}xrx oy for a finite segment I C Z,
there are translates of I in the direction e; contained in rectangles of arbitrarily large width
and of height arbitrarily large as a function of the width; this follows from the second part
of proposition 4.3. The word induced by y on this translate is the same as the original word.
If the word is in L, then when the width and height are large enough the machine will halt
prematurely.

One must be a little cautious regarding the analysis above, since it depends on the implemen-
tation of the algorithm the machine is running. It is important that the machine first calculate
the n-th disallowed word, and only then check it against its “input”. Given n, this first stage
(where we compute the n-th word of L) uses some amount of memory and time which depends
only on n and not on either the dimensions of the rectangle or the input, and therefore can
be performed on any rectangle which is wide and high enough. On the other hand, the second
stage (where we check if the word appears in the input) requires an amount of memory which

depends only on n, and time which depends only on n and on the width of the rectangle, so
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it can be performed on any sufficiently wide rectangle as long as the height is sufficiently large
compared to its width. These observations imply that if 7/(y)|; contains the n-th disallowed
word, then there is a rectangle wide enough and high enough for this to be discovered.

This completes the proof of theorem 1.4, since Y7, is a sofic shift via the Z3-factor map Z — Y7,
which forgets the second coordinate (the W-coordinate) and the machine symbols (we need only
re-parametrize the action to transform T into T<). More is true: as we show next, this map,
which is automatically a factor map also with respect to the action of T, is an ATIE with respect
to the T-action. This proves a special case of theorem 1.6 for ESSs.

To see that the factor map is an ATIE with respect to T, note that we have the sequence of
factors

Z =Y, xW =Y,

(the first map forgets the Turing machine symbols, and the second factors onto the first coordi-
nate). Since (W, T) is an almost-1-1 extension of an isometric system, in order to deduce that
Z — Yy is ATIE we need to show that Z — Y, x W is an ATIE with respect to T. To see
this, merely note that given (y,w) € Yz, x W, the superimposed layer representing the machine
run is completely determined on finite rectangles; it is undetermined only on infinite rectangles
(actually, only on rectangles which are infinite in the —ey or —es directions). However, this
occurs with probability 0 for any T-invariant measure by corollary 4.4. Hence Z — Yz, x W is

almost-1-1 with respect to T, and we are done.

5.2. The Striped System. We need one more auxiliary construction. Let QQ be the system
defined in section 4.3. In [HMO7] it was shown how to superimpose a layer over Q, in such a
way that each row is colored 0 or 1, the rows whose coordinates are in J,.1 \ J,- all have the
same color, and any combination of colors occurs subject to these restrictions; in particular if
there is a row not of the above type it may have any color; there is at most one such row (in
[HMO7] this was done with columns in place of rows, but the modification is trivial). We denote
this system S and call it the striped system. The main property of this system that we will use
is that, to each s € S, there is associated the density 6(s) of 1’s, which is well defined, and if s
has a unique binary representation then the n-th digit in its binary expansion is a 1 if and only
if the rows with coordinates Jy, 41 \ J,, are marked 1. It was shown in [HMO7] that for any s € S
and any £ > 0 one can estimate §(s) with error ¢ € (0,1) by observing the 0, 1-pattern induced
by s on any vertical segment {i} x .J, as long as |.J| > 10/e. We also note that if we fix 0 < § < 1
with unique binary representation, then the set S5 = {s € S : §(s) =} is a closed subset of S,
and the projection from it to ﬁg is 1-1 except when the image contains an exceptional row, in
which case the projection is 2-to-1 (because the only thing not determined is the color of that
row).

Finally, we note that in [HMO7] the coloring on rows in S was performed in such a way that,

given the coloring of rows, all other auxiliary symbols were determined.

5.3. Realizing EDSs. For simplicity of notation we prove theorem 1.6 for d = 1. Let X C

({0, 1}M)Z be an effectively closed subsystem and let Uy, Us, . . . be a recursive sequence of cylinder
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sets whose union is the complement of X. More precisely, we are given an algorithm which, on
input k, outputs a function c¢: I — C, where I C Z is finite and C is the parametrized family of
cylinder sets in {0, 1}, such that = € Uy, if and only if (i) € (i) for i € I.

The method of realizing X as an ATIE of the subaction of an SFT is similar to that in section
5.1. We will construct a 3-dimensional SFT Y so that the configurations induced by y € Y on
each translated plane

F,, = spang{ey,es} + nes
encodes an infinite sequence s, = (s,(1),5,(2),...) € {0,1} (rather than a single symbol as
in the expansive case), and we will want this to be done in a manner which is invariant to the
shifts T, and T,,. Assuming we have such a representation, we can define 7 : ¥ — ({0, 1})Z
by 7(y) = (Sn)nez; this is a factor map from (Y, T) to ((8N)%,T1), where T = Ty, 4 ¢, 1c;. Then,
as in the expansive case, we will superimpose another layer which kills all points y € Y which
don’t map to X under 7.

There are many ways to extract a sequence (s,(7))2; from a two-dimensional configuration
on F,: the trivial one is to fix an enumeration of the elements of Z? and use this to identify
each configuration in F), with an element of X~. This solution will not work for us for two
reasons. First it is not invariant to T¢,,7.,. Furthermore, in order to perform the selection
stage of our strategy we will need the information encoding the sequence in each plane F;, to
be “spread all over”; this is because each run of a Turing machine has access to only a small
region of space, and from this sample it must extract sufficient information about the encoded
sequences to make its decision. To accomplish both invariance and redundancy, we encode a
sequence in configurations by using densities of symbols. By making the distribution of symbols
in F,’s sufficiently uniform we can guarantee that the configuration on the intersection of each
large enough rectangle with F), gives sufficient information to decode increasingly long portions
of the encoded sequence.

Here are the details. We start with the 2-dimensional system QQ of section 5.2, and extend
it to a 3-dimensional system by sending each 2-dimensional configuration w € ﬁg to the three-
dimensional configuration w which is constant in the direction ey, and on F the pattern is
obtained from w by identifying the direction e; € Z? with e; € Z3, and ey € Z? with ez € Z3;
that is, for each w € ﬁg a point y is defined by

y(ier + jea + kes) = w(i, k)

This defines a three-dimensional SFT which we denote Y. In particular, columns in ﬁg corre-
spond to lines in direction e3 in Y. Also, the T-action on Yj is an almost-1-1 extension of an
isometric action.

Next, in each plane F),, we extend the configuration to a striped system as in section 5.2;
we allow the stripes of each translate of the xz-plane to be colored independently. Due to the
embedding of Z? in Z3 which we have chosen, stripes now form lines in the direction e;. Denote

the resulting system by Y.
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For y € Y we denote by 6,(y) the density of 1's occurring in the plane F,, so §,(Ty) =
On+1(z). The pattern induced by x on F), allows us to recover d,(y); this information can also
be obtained from the pattern induced on any vertical line (i.e. in direction e3) contained in
F,, and furthermore in order to recover 6, (y) up to an error of 27% it suffices to examine the
pattern on any vertical segment of length e.g. 2K in F,.

We will use d,,(y) to associate a sequence s, of 0’s and 1’s to y|p,. The most straightforward
way to do this would be to set s,, to the digits of the binary representation of d,,(y), but then we
run into ambiguities related to the non-uniqueness of binary expansions of dyadic numbers. To
avoid this, we do not define this association y|g, — s, for every y € Y, but rather only for those
y’s such that for every n, the binary expansion of d,(y) is of the form §,(y) = 0.b10b20030. ..
for some sequence b; € {0,1}. The set Y/ C Y so that §,(y) is of this form for all n is a closed
subset of Y, though not an SFT. For convenience, to each y € Y\ Y’ we define §,,(y) = 0,0,0,...
for all n.

Let 7 : Y — (ZN)Z denote continuous shift-commuting map y — (6, (y))nez from (Y, T) to
(ZN)%. We now superimpose another layer over Y which kills points outside of Y’ and also
point from Y’ which do not project into X under 7. As in the expansive case, we first take the
product of Y with W, and over this product we superimpose another layer which represents the
run of a Turing machine over rectangles induced by W. We use real-time machines as described
in section 4.6, which allows the machine to read arbitrarily long vertical segments of data from
the Y-layer. See figure 5.1.

The machine implements the following algorithm. We denote by ygr the two-dimensional
array of input symbols on a rectangle R, which in our setting comes from the restriction of a
point y € Y to a rectangle R induced by some w € W. The rows of yr represent the input
at a given time and the vertical one represents passage of time. The algorithm iterates over
integers k € N? in some order, and for each k it applies the given algorithm which calculates
Uy. Suppose Uy is the basis element specified by a finite subset I C Z and c¢: I — C, where C is
the collection of cylinder sets in {0, 1}!. Assume that each cylinder set c(i), i € I is defined by
indices in a set J C [1;m] C N. Next, the algorithm iterates over the tape, and at the i-th cell
it captures 2m” vertical bits from its input, and does this also for cells i +1,i4+2,...,i+|I| — 1.
This data suffices to determine, up to m bits, the densities d;(y) of the planes F; to which the
cells i,i+1,...,74 |I| — 1 belong. If these finite expansions are not of the form 0.6;00,0. .. the
algorithm halts. Finally, with the information at hand the algorithm can determine whether
some translate of Uy intersects the projection under 7 of the current point, and if the answer is
affirmative the algorithm halts.

As before, to make this work we assume that the machine first calculates Uy and only then
checks it against its “input”. This first stage uses some amount of memory and time which
depend only on k, and therefore can be performed on any wide enough rectangle. Again, the
second stage requires an amount of memory depending only on k,|I|,|J| and time which is
additionally a function of the width of the rectangle, so can be performed on any rectangle

whose height is sufficiently large compared to its width. These observations, and the fact that
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W induces admissible partitions, imply that every subword encoded by a point in Y will be
checked by some machine run in some rectangle.

The above implies that if we let Z denote the resulting SFT then it consists of extensions of
pairs (y,w) with y € Y/ and such that y projects to X via 7.

To complete the proof we must verify this projection is an ATIE with respect to T%. As at
the end of section 5.1 we have map 7 : Z — Y which is an ATIE with respect to its image, but
instead of the image of 7 being the sought-after system, as in section 5.1, we now must project
one more time, using the map 7 : 7(Z)— Y. But this map is also an ATIE, because we can
break it into

T(Z2) 2 X xYy—=XxU—=X

where the first map acts coordinate-wise as the identity on the first component and as the ATIE
Yy — U on the second, where U is an isometric system; and the second factor map is projection

onto the first component. Finally, since the composition of ATIEs is an ATIE, we are done.

5.4. Variations. With a little more effort the equicontinuous system that appears in the ATIE
of theorem 1.6 can be made to be transitive, i.e. an odometer. This can be achieved if, instead
of the systems 2, which we constructed in section 4.3, we work with systems in which the
spectrum of T and T, come from distinct primes. In this case the action of T}, for u €Zey UZes
will be transitive, i.e. an odometer. We omit the details.

We also note that other types of substitution systems may be used instead of odometers. For

the dynamical possibilities this provides see [M0z89].

6. CONSTRUCTIONS AND COUNTEREXAMPLES

6.1. The Relation Between subactions of SFTs and Limit Sets of CAs. There is a
close connection between the action of a CA on the natural extension of its limit set, and one-
dimensional subactions of SF'Ts and sofic shifts: given a system belonging to one of these classes
one can construct a member of the other class which captures most of the dynamics of the
original system.

In order to go from a CA f acting on Y2 to an SE'T, one considers the subshift X C X
defined by the property that z € X if and only if 2|f; 1 1yxz¢ = f(2]{}xza) for every i € N,

Zd+1

where we identify configurations on {i} x Z? with configurations on Z¢ in the obvious way. Since
f acts by a local rule this system is an SF'T, and since for z € X the sequence of configurations
(Z[{n}y 2z )nez constitutes a two-sided f-orbit, the subaction (X, T}) is isomorphic to the natural
extension the action of f on its limit set.

To go the other way, suppose that X = S, C $Z% is an SFT defined by a finite set L C ©¥
of disallowed patterns, £ C Z% finite (a standard argument shows that every SFT is of this
form). We construct a d-dimensional CA which has similar dynamics to (X,T1). We do this
by introducing a “destructive” symbol which comes into being at sites where the SFTs rules are

broken, and “spreads”; and on the other hand the CA acts like T} on legal configurations. To be
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precise, let * be a symbol not appearing in ¥ and let A = X U {x}. Define a CA f : AZY 5 AZ

acting on x € AZ* according to the rules:

o If z(u) ==, or z(u=+e;) == forsomei=1,...,d, or (Tyz)|p € L, then (fz)(u) = *;

e otherwise (fz)(u) = z(u + e1).
Note that X C yz! - AZd, and the restriction of f to X acts like the shift 77. On the other
hand, if z € AZ* \ X then fz contains a * and this symbol will spread: for any u € Z¢ we will
have (f"x)(u) = * for all large enough n. Hence the configuration consisting of *’s is the unique

attracting point of AZ* \ X under f. It follows that the only nontrivial dynamics of f can occur
in X, where f acts like T7.

6.2. Systems which cannot be realized as subactions. In this section we present some
examples of systems which cannot be realized as subactions of SFTs or sofic shifts. The first
class of examples are the odometers, defined as equicontinuous, transitive actions on infinite
spaces. There exist EDS of this type: it is easy to check that the map x — x + 1 on the group
of 2-adic integers is an EDS. As is well known, every automorphism of this system is also given
by a translation. Thus if this system could be realized as a subaction of a Z%-action it would
follow that the Z% action is itself an equicontinuous action; and it is well known the any subshift
on which the shift acts isometrically is finite, a contradiction.

Since a direct proof is not long we include it.
Proposition 6.1. Odometers cannot be realized as the subaction of a symbolic system.

Proof. Suppose to the contrary that U C YZ* for some d and (U, T) is an odometer for T =T}
(the proof for T' = Tis the same). Fix a compatible metric on U and choose € > 0 so that
d(u,u’) < e implies u(0) = «’(0). Tt is well known (and not hard to check) that for every &/ > 0
there is an n > 0 so that d(T7'u,u) < &’ for every u € U, and in particular this holds for &’ = ¢.

Now for any u € U we see that for v € Z¢ we have
d(Tyu, T (Tyu)) < €

so u(v) = u(v + neyp). This holds for all v € Z%, so as a configuration in 32" we have that
u has period n in direction e;, hence the action of T3 on it is periodic. But this is impossible
because a transitive isometric action is minimal and therefore, if it’s infinite, cannot have periodic

points. O

Next, we exhibit an ESS which is not the subaction of an SFT, although by theorem 1.4 it
surely is a subaction of some sofic shift. Recall that the (topological) Chacon system is obtained
by the following process. Define words a,, € {0,1}* by setting a; = 0, and given a,, define
Ap41 = Gnlnlay, SO

az = 0010 , a3 = 0010001010010
The Chacon system X C {0, 1} is the subshift such that a finite word appears in X if and only

if it appears in some a,.
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The condition that a word appear as a subword of some a,, is decidable. Indeed, it is easy to
show by induction that for each k, every a, for n > k is a concatenation of the words a; and
arl. Thus if b is a word whose length does not exceed that of ag, then b is a subword of a,
if and only if it is a subword of apay or of aplag. It follows that the set of subwords of X is
recursive, so X is an ESS.

We remark that this argument can be applied to show that many other constructions in

symbolic dynamics give ESSs; it works for any explicit construction by block concatenation.

Proposition 6.2. Let Z be an SFT such that the subaction (Z,Ty) factors onto the Chacon
system (X,T) via 7 : Z — X. Then |t~ 1(z)| > 1 for almost every x € X with respect to the

unique invariant probability measure on X. In particular, (X, T) is not the subaction of an SFT.

Proof. Let Xg C X be the G5 subset of points with a unique pre-image, and let u be the unique
invariant measure on X, which is ergodic. Note that X is invariant under 7', so u(Xp) = 0 or
1.

Assume that u(Xg) = 1. Let 1 denote the lift of y to 771(Xy), so f is an invariant measure
on Z, and it is the only one since any other invariant measure would have to be supported on
Z \ 7~ (Xp), hence would project under 7 to an invariant measure on X supported on X \ Xo,
hence is different from p, a contradiction.

Each of the shifts T; maps g to a Ti-invariant measure, so by uniqueness of i we see that
Ty, ..., T; act as automorphisms on the measure preserving system (Z, i, 71). By a theorem of
del Junco [dJ78], i (and hence ;1) has minimal self joinings, and in particular has no non-trivial
automorphisms. Thus for g-almost all z € Z the shifts T; act as powers of T;. Hence for a fixed
typical zg, we have T;zg = Tln(i)zo for i =2,3,...,d and some integers n(2),...,n(d).

The group Z? is generated by T} = Ty, Tj = Tfn(2)T2, LT = Tfn(d)Td, and the Z%-action
they generate on X is also an SFT, so by this re-parametrization of the action we may assume
that n(2) = ... = n(d) = 0. Now the action on zq is trivial for T,...,T4. Let R > 0 be the
maximum diameter of a pattern defining Z (with respect to this new parametrization). Since
the alphabet is finite we can find m < n so that zo((m +é)e1) = zo((n +i)ey) for 1 < i < R,
and hence zo((m +1i)e; + u) = zo((n + ¢)er + ) for any u € spang{es,...eq}.

Write & = n — m; it follows that the point z; defined by 21(2?:1 sie;) = zop(sher) for
sy = s1 mod k belongs X, since we are merely “gluing” together patterns on strips of the form
[m;n + R — 1] x Z3~, the gluing taking place along the boundary of depth R, on which the
patterns agree.

For the point 2z’ we now have that z/(u) = 2/(u + ke;) for any u € Z%, i.e. it is periodic in
the ej-direction. Hence its image in X is as well. But the Chacon system does not contain any

periodic points, being infinite and minimal; a contradiction. O

This proof works generally for any Z*-system X with trivial centralizer.
It remains an interesting open question whether the Chacon system can occur as a finite-to-
one factor of the subaction of an SFT. Another is whether a uniquely ergodic subaction of an

SFT can be measure-theoretically isomorphic to the Chacon system.
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7. ENTROPY

7.1. Entropy. The entropy of a dynamical system is a non-negative number measuring the
asymptotic rate of growth of the number of distinct orbits at smaller and smaller scales. A
definition for the general setting may be found in [Wal82]. For our purposes the entropy of a
subshift X C %" may be defined by

WX) = lim ——

Tl log #{a € ©I" : a appears in z}

where F,, = {1,2,...,n}¢ is the d-dimensional cube of side n. This limit can be shown to exist
and converges to its limit from above, and is decreasing along the sequence n = 2% k=1,2,.. ..

To define entropy for a totally disconnected system X, let P;,Ps,... be a refining se-
quence of closed and open partitions of X whose union, together with all shifts of atoms by
the action, separates points in X. Let X, be the symbolic factor defined by P, (that is, if
Pn={An1, -, Apg(m }, then X, € {1,. ..,k(n)}Zd such that y € X, if and only if there is
some z € X with Tz € A,, ;) for u € Z%). Then h(X) =limh(X,,).

Entropy is an isomorphism invariant. If Y — X is a factor then A(Y) > h(X), and h(X xY) =
h(X)+ h(Y). Also if X CY is a subsystem than h(Y) > h(X). If X; O X5 D ... are symbolic
systems then h(X,) \, h(NX,,). The entropy of a non-invertible system is the entropy of the
natural extension of the original system.

There is a notion of entropy h(u) for invariant measure p on X, and the variational principle
gives the relation h(X) = sup, h(p), where p ranges over all invariant probability measures on
X (see [Wal82]). This is true also for non-invertible systems.

Applying the above we see that if X is an SFT and f is the CA associated to X in section
6.1, then h(X,T1) = h(A, f), where A is the limit set of f. To see this, note that except for the
Dirac measure on the fixed point, there is a 1-1 correspondence between f-invariant measures
on A and Ti-invariant measures on X, and corresponding measures are isomorphic, so have the

same entropy. Since the measure on the fixed point has entropy 0, the claim follows.

7.2. A characterization of the entropy of EDS. In this section we prove theorem 1.8:
h > 0 is the entropy of an EDS if and only if it is the liminf of a recursive sequence, or

equivalently, there is a recursive array (m,n) — hp,(n) € Q with hy,(n) N\, hm  h. To

see that liminf a,, has this form when (a,, )22 is recursive, define the recursive array h,,(n) =
min{ @, @m+1, - - -5 min - The other direction is slightly more involved, and we refer the reader
to [ZWO1].

To simplify notation we give the proof for Z-systems; the multidimensional case is similar.
Let us first show necessity, which is the easier direction. Denote by X* the set of finite words
over %. Recall that h € R is right-recursively enumerable if there is a recursive sequence a,, € Q

with a, \, h. Define S, for infinite sets L in the same way as in section 1.1.

Lemma 7.1. If L CX¥* is RE, then h(Sy) is right-recursively enumerable
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Proof. Let aj,az,... be a recursive sequence with L = {a,, : n € N}. Let N, ,, denote the
number of patterns a € %2" which do not contain any of the words ai,as,...,a,. Then
oy = % log Ny, , is a recursive array, and by enumerating the pairs (m,n) and taking the
minimum of h,, ,, for initial segments of this enumeration, we see that h = inf,, ;, hy, » is right
recursively enumerable. We claim that h = h(Sp). Clearly > holds. On the other hand,
Pk — h(Sqay,....an}) @8 k — oo by [Fri97] or [HMO7]|. Therefore h < inf, h(S{,, ... 4,3 = M(SL)

as desired. O

Returning to the general (non-expansive) case, let X be an EDS. Let P, be a recursive
sequence of refining partitions separating points in X; such a sequence clearly exists. Let X,, be
the factor defined by P,,. By proposition 3.3 and the previous lemma h(X,,) is right recursively
enumerable, but an inspection of the proof of the lemma shows that the recursive sequence
of numbers descending to h(X,,) can be computed from P, and the effective data defining X
(see proposition 3.3). In other words, we can compute a recursive array (m,n) +— hy,(n) with
hm(n) \, h(Xpm) /" h(X). This proves one direction of theorem 1.8.

Before proving the opposite direction, we demonstrate the technique in a simpler case.

Lemma 7.2. Let h be a right recursively enumerable number; then there exists an ESS X with

h(X) = h.

Proof. We may assume that 0 < h < 1, since we can increase entropy by integer increments by
taking products with full shifts.

For a word a € {0,1}¢, define Ny(a) to be the number of distinct subwords of length k in
a. Given a decreasing recursive sequence of numbers 0 < h(n) < 1 with h = limh(n) > 0, we

define a sequence of numbers ¢(n) recursively by
(1) = 2
(n+1) = ((n)"™
and for n > 2 define sets L,, C {0, 1}“") by
Ln,={ac{0,1}*™ . Ny (a) > £(k) - {2}1(]“)'@(]“)—‘ for some k < n}

Clearly if a ¢ Ly, and k < n then a|; ¢ Ly, for any segment I of length ¢(k). It follows that S,
is a decreasing family of subshifts. Set L = UL,,; this is clearly an RE set. Let X = S;, = NSy, .
We claim that h(X) = lim h(n).

Indeed, the inequality h(X) > h follows from the fact that we can construct a subshift
Xo € X with entropy h. To do this select [2"(1)-“(] blocks of length £(1). Form all possible
concatenations of £(2)/4(1) of these blocks; this gives a collection of (2}1(1)'2(1)16(2)“(1) of blocks
of length ¢(2), none belonging to L. Choose a subset of size [2}1(2)'[(2)] of these blocks — the
fact that the h(i) decreases means that there are enough blocks to do this — and again form all
concatenations of length ¢(3)/¢(2) of them, arriving at a collection of [2}1(2)'[(2)]2(3)“(2) blocks
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of length ¢(3) none of which belong to Ls; etc. Taking the limit of these collections of blocks
gives a subshift Xy C X with entropy h.

For the other direction we rely on an empirical version of the Shannon-MacMillan-Breiman,
theorem 2.2 of [OW90|, which states that if (£,)%2; is a typical sample from a finite valued
process with entropy ¢, then for all € > 0, all M sufficiently large and all N > MM one
cannot cover 1 — ¢ of the word £,&; ... &x with a collection of less than 2(t=¢) words of length
M; choosing a large enough n we can take M = {(n) and N = {¢(n + 1), and we get that
&6y ... 6Ny € Lyy1. Now suppose by way of contradiction that h(X) > h. By the variational
principle there is an invariant measure p on X with entropy > h and the support of p contains
points containing subwords belonging to some Ly, and this is impossible, in contradiction to
the Ornstein-Weiss result. Hence h(X) < h. O

We now turn to the proof of sufficiency in theorem 1.8. Suppose that (n,k) — h, (k) is
recursive, that h, (k) \, h, and that h,, /" h. We may assume without loss of generality that
hnt1(k) > hp(k), since we can always replace h, (k) with max,,<, hm (k). As before, we may
also assume that 0 < h < 1. We can further assume that 0 < h,, (k) < 1. We are out to construct
an EDS X = X (h) with entropy h.

We describe an effectively closed subset of ({0,1}")%, which we think of as the space of
colorings of Z x N, by specifying a sequence of disallowed 2-dimensional patterns of rectangular
shape. For a rectangular pattern a € {0, 1}[15m]x[19"1 we think of it as a word of length m over
the alphabet {0, 1}" and define Ny (a) as above; i.e. Ni(a) is the number of distinct sub-patterns
of a of the form al}; i1 x)x[1;m) (for the purpose of counting we identify patterns which differ only
up to a translation).

Define £(m) as in the proof of lemma 7.2, i.e. £(1) = 2 and £(m + 1) = £(m)*(™). Define
languages Ly, ,» C ({0,1}")“™) by

L = {a € ({0, 13" Nyg (alpsemyx i) > £k): [2}“('“)'“ﬂ for some k <m and i < n}

Let L be the union of the L, ,, together with all translates of patterns from this union in the
Z-direction (that is if a pattern a € {0, 1}[1:7x[17] ig in the union then so are all translates of
it on rectangles [i,i + m] x [1;n]). This is clearly an RE set. Let X be the complement of the
corresponding cylinder sets in ({0, 1}Y)Z; this is an EDS.

If we consider the partition P,, of X according to the pattern induced on {0} x [1;n] then
the resulting symbolic system X, has entropy h,,, as can be seen from the lemma above. Since
the sequence P, is recursive, and together with all translates generates the topology of X, we
see that A(X) = lim h(X,,) = h, as desired.

8. FacTtorRING SFTs oNTO FULL SHIFTS

We next prove proposition 1.10, which answers question 2.10 of [BS07]. We refer to [BS07]

for background. Our construction is based on the following lemma:
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Lemma 8.1. There is a uniquely ergodic ESS X C {0,1}% such that the frequency of 1’s in
each point x € Sy, is 1/2, and such that for every integer r > 0 there is an n and a block a of
length n appearing in X, such that
) ) (n —2r)3
: =1 —_—
#iali)=1) < 3
Proof. We briefly sketch the construction, which is by block concatenation. We define pairs of

words a,., b, € {0, 1}’“(” recursively, satisfying the following properties:

(1) a,b, are concatenations of a,_1,b,._1, and contains both as subwords.
(2) The frequency of 1’s in a, is < (k(r) — 2r)3/2k(r)® and in b, is > (k(r) + 2r)3/2k(r)3,
and the sum of these frequencies is 1/2.
(3) for r > 3, for every word w of length < k(r — 2), and any two subwords ¢, ¢’ of a,, b, of
length k(r — 1), the frequencies of the occurrence of w in ¢ and in ¢” differ by at most
1/r.
Here w’ means the concatenation of w with itself i times. We begin with k(1) = 3 and a; = 000,
by = 111, and it is easy to check that given a,_1,b,_1, the choice a, = (a b7 1)a_; and
b, = (by_1a,—1)™b?_; will satisfy these requirements for suitably chosen large integers m > n
(which may depend on 7).

A standard argument now shows that one-sided infinite sequences a, b which are the limits of
a, and of b,, respectively, have the same forward orbit closure, which is uniquely ergodic with
1’s appearing with frequency 1/2. Now take the natural extension. The fact that this is an ESS
is clear, and given r, the desired block is a, (with n = k(r)). O

Let Y C {0, 1}23 be the subshift obtained by extending each point on X in directions es
and ej (that is: y € YV if and only if for some 2z € X we have y(i,j, k) = x(¢) for all (i,7, k).
Thus (Y,T1) = (X, T). By theorem 1.4 and its proof, Y is a sofic shift and there is an SFT Z
and Z3-factor map 7 : Z — Y so that the extension Z — Y is ATIE with respect to Ti. In
particular, h(Z) = 0 with respect to the Z3-action.

We may assume that 7 is a 1-block code, so each symbol in Z contains a component from Y’s
alphabet and 7 simply forgets all other information. Starting with Z, superimpose 4 symbols
over the occurrence of 1's in Z (these are the 1’s coming from Y), with no restrictions on
configurations, and call the resulting system . Since the density of 1’s in Y is 1/2, we have
h(f/) = log2. Write 7 : W — Y as well. As in [BS07], we observe that there is a unique
invariant measure p on W with entropy log2, and if y = fuydu(y) is the disintegration of
poover Y then for v-a.e. y € Y, the measure j, is obtained by uniformly and independently
choosing the symbol over each 1 in y.

We shall show that no factor map exists from W to the full shift. Indeed, suppose f: W —
{0, 1}Z3 were a factor map given by a sliding block code with radius r. As in [BS07], for a typical
y € Y the measure p,, must map under f to the uniform Bernoulli measure on {0, 1}23. Now
since y is typical we can, using the properties of X, choose a large cube @ C Z3of dimensions

n X n x n, so that the density of 1’s in y|g is < (n —2r)3/2n3. Thus the entropy of the measure
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vy with respect to the partition according to symbols in Q is < log4 - (n —2r)3/2. But because
the window width of f is r, for any w € W the values of w|g completely determine the pattern
f(w)|@, where @ is the cube obtained by deleting from @ every point within r of the complement
of @, in the ¢, metric. But the uniform measure on {0, 1}23, when restricted to the coordinates
Q, has entropy |Q|-log2 > log4 - (n — 2r)3/2; a contradiction. This completes the proof of the
first part of the proposition.

On the other hand, it is not hard to explicitly construct a non-trivial, uniquely ergodic subshift
X C{0,1} with 1’s appearing with density % and such that if we extend the one-dimensional
subshift by adding one of four random colors over each 1, the resulting system factors onto the
full shift {0,1}%. Starting now from a uniquely ergodic zero entropy 3-dimensional SFT whose
subaction factors onto X, the same process gives a subshift that factors onto {0, 1}23.

To construct such a system X, pick any uniquely ergodic ESS whose points are concatenations
of the words a = 111000 and b = 110100 with equal frequencies (for example, repeat the
construction of lemma 8.1, starting with a; = a and by = b). Let A C {a} x {0, 1,2, 3} be those
pairs where (a,a’) € A if and only if (a(i) = 0) = (a’(i) = 0), and define B C {b} x {0,1,2,3}6
similarly. Note that |A| = |B| =2°. If Y C X x {0, 1,2, 3}Z is the subshift obtained by coloring
the 1’s in X arbitrarily with 0,1,2,3 and coloring the 0’s with 0, then each point in Y is the
concatenation of words from A and B. We can define a factor map 7 : Y — {0, 1} which, for
(z,2") € X x{0,1,2,3}2, first identifies the intervals I so the a|; = a or b (these are determined
uniquely and locally), and then act so that m(x.2")|; = 7o (y|r), where g is an arbitrary function

so that my|4 and mo|p are bijections to {0,1}S.

9. DISCUSSION AND PROBLEMS

In this section we collect some comments and questions regarding this work. We have seen
that the class of subactions of SFTs are very rich; almost as rich as the category of general
effective dynamics. This reflects the richness of the full dynamics. Another indication of this
richness is Simpson’s work [Sim07]|, where the complications are of a more recursive-theoretic
nature.

A major challenge is to understand the full dynamics. One approach is to try to control the
full dynamics via subactions; this is the approach taken in [HM07, BS07]. Some information
can be obtained directly from the fact that the system is effective; theorem 4.1 of [HMO7] is a
step in this direction, but this gives rather poor information.

A reasonable intermediate step towards the full dynamics might be to complete the picture

of the Z%!-subactions Z%-SFTs; these are effective but our constructions do not work for them.
Problem 9.1. Characterize the Z¢~1 subactions of Z¢-SFTs and sofic shifts.

Even with regard to the Z?~2-subactions there are some interesting questions of a topological

nature. It would be desirable, for example, to get extensions which are smaller then ATIEs.

Problem 9.2. Can every EDS be realized as a finite-to-1 factor of the subaction of some SFT?
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Another interesting question is the following:

Problem 9.3. What are the expansive subactions which can occur for SFTs, particularly in

dimension 27

Such systems are closely related (though more complicated than) expansive cellular automata,
on which some progress has been made in the one-dimensional case [BM97, BM00, Nas0§].

One can also use the recursive-theoretic approach to differentiate between potentially tractable
systems and intractable ones (e.g. systems with nontrivial Medvedev degree). Two important
classes of systems at opposite ends of the dynamical spectrum are the strongly irreducible SFTs
and the minimal SFTs (minimal means every orbit is dense). For X in these classes the globally
admissible patterns can be decided, i.e. the extension problem can be solved for them. For
strongly irreducible systems this was demonstrated in [HMO7]; since the proof for minimal SFTs
is short we include one here (We note that related results have been proved independently in
[DKBO06]):

Proposition 9.4. There is an algorithm which, given a finite set L of patterns defining a

non-empty minimal SFT and a pattern b € XY, decides whether b appears in Sy or not.

Proof. The algorithm is as follows: For each n enumerate all [—n; n]%-patterns ay, . . . ap(n) which
do not contain patterns from L. If a;|p # b for all i = 1,...k(i), output that b does not appear
in X, and halt. If, on the other hand, b occurs in all a;’s, output that b appears in Sr, and halt.

To see that this algorithm halts, note that if b does not appear in Sy, then by compactness
the first alternative will eventually hold; otherwise b appears in Sy, so the second alternative
will eventually occur, since if it does not then again by compactness there is a point in x not

containing b, contradicting minimality of X. 0

It is important to note that we assume Sy, is nonempty; in general, it cannot be decided
whether Sy, is empty or not.

This recursive-theoretic property of minimal and strongly irreducible SFTs severely limits the
applicability to them of the methods presented here. In fact, it seems that any scheme which tries
to use sufficiently strong computation (e.g. Turing machines) to introduce dynamical features
into SF'Ts must fail to produce SFTs in these classes, since such a scheme would probably allow
us to leave the recursive universe.

The following basic problem underscores the contrast between what we can construct in
general and in the minimal case. Recall that the universal Z%-odometer is a minimal Z%-action
on the Cantor set which factors onto every Z%-action on a finite abelian group, and such factors
separate points. This system is unique up to isomorphism. Using our results one can construct
an SFT that factors onto the universal odometer but this SFT will be far from minimal; it will

not even be transitive.

Problem 9.5. Is there a minimal SFT extending the universal odometer?
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For cellular automata, we have characterized entropy and obtained a fairly good understand-

ing of the possible dynamics on the limit set in dimension > 3, a least with regard the invariant

measures. Once again, topologically we are far from a good understanding.

Problem 9.6. Can one describe the dynamics and entropies of surjective or injective CA?

Problem 9.7. Can anything be said about the dynamics of 1- and 2-dimensional CA on their

limit sets, analogous to theorem 1.77

[Ber66)
[BM97]

[BMOO]

[BS94]

[BS07]

[CHY90]

[d178]

[DKBO6]

[Frio7]

[Hed69]

[HKC92]

[HMO7]

[HU79]

[Hur87]

[Hur90]
[IMO5]

[Kar94|

[Kar05]
[Lin84]

[Moz89|

REFERENCES

Robert Berger. The undecidability of the domino problem. Mem. Amer. Math. Soc. No., 66:72, 1966.
F. Blanchard and A. Maass. Dynamical properties of expansive one-sided cellular automata. Israel J.
Math., 99:149-174, 1997.

Mike Boyle and Alejandro Maass. Expansive invertible onesided cellular automata. J. Math. Soc. Japan,
52(4):725 740, 2000.

Robert Burton and Jeffrey E. Steif. Non-uniqueness of measures of maximal entropy for subshifts of
finite type. Ergodic Theory Dynam. Systems, 14(2):213 235, 1994.

Mike Boyle and Michael Schraudner. Z% shifts of finite type without equal entropy full shift factors.
preprint, 2007.

K. Culik, T, .. P. Hurd, and S. Yu. Computation theoretic aspects of cellular automata. Phys. D,
45(1-3):357-378, 1990. Cellular automata: theory and experiment (Los Alamos, NM, 1989).

Andrés del Junco. A simple measure-preserving transformation with trivial centralizer. Pacific J. Math.,
79(2):357-362, 1978.

Jean-Charles Delvenne, Petr Kurka, and Vincent Blondel. Decidability and universality in symbolic
dynamical systems. Fund. Inform., 74(4):463 490, 2006.

Shmuel Friedland. On the entropy of Z% subshifts of finite type. Linear Algebra Appl., 252:199 220,
1997.

G. A. Hedlund. Endormorphisms and automorphisms of the shift dynamical system. Math. Systems
Theory, 3:320-375, 1969.

Lyman P. Hurd, Jarkko Kari, and Karel Culik. The topological entropy of cellular automata is uncom-
putable. Ergodic Theory Dynam. Systems, 12(2):255-265, 1992.

Michael Hochman and Tom Meyerovitch. A characterization of the entropies of multidimensional shifts
of finite type. preprint, www.arziv.org/math.DS/0207206, 2007.

John E. Hopcroft and Jeffrey D. Ullman. Introduction to automata theory, languages, and computation.
Addison-Wesley Publishing Co., Reading, Mass., 1979. Addison-Wesley Series in Computer Science.
Lyman P. Hurd. Formal language characterizations of cellular automaton limit sets. Complex Systems,
1(1):69-80, 1987.

Lyman P. Hurd. Nonrecursive cellular automata invariant sets. Complez Systems, 4(2):131-138, 1990.
Aimee Johnson and Kathleen Madden. Factoring higher-dimensional shifts of finite type onto the full
shift. Ergodic Theory Dynam. Systems, 25(3):811-822, 2005.

Jarkko Kari. Rice’s theorem for the limit sets of cellular automata. Theoret. Comput. Sci., 127(2):229~
254, 1994.

Jarkko Kari. Theory of cellular automata: a survey. Theoret. Comput. Sci., 334(1-3):3 33, 2005.

D. A. Lind. The entropies of topological Markov shifts and a related class of algebraic integers. Ergodic
Theory Dynam. Systems, 4(2):283 300, 1984.

Shahar Mozes. Tilings, substitution systems and dynamical systems generated by them. J. Analyse
Math., 53:139-186, 1989.



34

[Mye74]
[Nas08]

[OW90]

[Q503]

[Rob71]

[Sim07]

[Sut05]

[vN66]
[Wal82]

[Wolg4]

[ZWO01]

MICHAEL HOCHMAN

Dale Myers. Nonrecursive tilings of the plane. I1. J. Symbolic Logic, 39:286 294, 1974.

M. Nasu. Textile systems and onesided resolving automorphisms and endomorphisms of the shift.
Ergodic Theory Dynam. Systems, 28(1):167-209, 2008.

Donald S. Ornstein and Benjamin Weiss. How sampling reveals a process. Ann. Probab., 18(3):905-930,
1990.

Anthony Quas and Ayse A. Sahin. Entropy gaps and locally maximal entropy in Z¢ subshifts. Ergodic
Theory Dynam. Systems, 23(4):1227 1245, 2003.

Raphael M. Robinson. Undecidability and nonperiodicity for tilings of the plane. Invent. Math., 12:177

209, 1971.

Stephen G. Simpson. Medvedev degrees of 2-dimensional subshifts of finite type. preprint,
www.math.psu.edu/simpson/papers/2dim.pdf, 2007.

K. Sutner. Universality and cellular automata. In Machines, computations, and universality, volume
3354 of Lecture Notes in Comput. Sci., pages 50-59. Springer, Berlin, 2005.

Jon von Neumann. Theory of self-reproducing automata. 1966.

Peter Walters. An introduction to ergodic theory, volume 79 of Graduate Texts in Mathematics.
Springer-Verlag, New York, 1982.

Stephen Wolfram. Universality and complexity in cellular automata. Phys. D, 10(1-2):1 35, 1984. Cel-
lular automata (Los Alamos, N.M., 1983).

Xizhong Zheng and Klaus Weihrauch. The arithmetical hierarchy of real numbers. MLQ Math. Log.
Q., 47(1):51 65, 2001.

Current address: Fine Hall, Washington Road, Princeton University, Princeton, NJ 08544

E-mail address: hochman@math.princeton.edu



