
ON THE DYNAMICS AND RECURSIVE PROPERTIES OFMULTIDIMENSIONAL SYMBOLIC SYSTEMSMICHAEL HOCHMANAbstra
t. We study the (sub)dynami
s of multidimensional shifts of �nite type and so�
shifts, and the a
tion of 
ellular automata on their limit sets. Su
h a suba
tion is alwaysan e�e
tive dynami
al system: i.e. it is isomorphi
 to a subshift over the Cantor set the
omplement of whi
h is a re
ursive sequen
e of basi
 sets.Our main result is that, to varying degrees, this re
ursive-theoreti
 
ondition is also su�-
ient. We show that the 
lass of expansive suba
tions of multidimensional so�
 shifts is thesame as the 
lass of expansive e�e
tive systems, and that a general e�e
tive system 
an berealized, modulo a small extension, as the suba
tion of a shift of �nite type or as the a
tionof a 
ellular automaton on its limit set (after removing a dynami
ally trivial set).As appli
ations, we 
hara
terize, in terms of their 
omputational properties, the numberswhi
h 
an o

ur as the entropy of 
ellular automata, and 
onstru
t SFTs and CAs withvarious interesting properties. 1. Introdu
tion1.1. Ba
kground. Let Σ be a �nite set of symboli
 and let ΣZ
d be the 
ompa
t spa
e of
on�gurations, i.e. of Σ-
olorings of Zd. This spa
e is the full shift, and Zd a
ts on it by thetranslations{Tu}u∈Zd given by (Tu(x))(v) = x(v + u), v ∈ Zd.By a d-dimensional pattern over Σ we mean a Σ-
oloring of a �nite subset of Zd. If L is a�nite set of patterns then they de�ne a shift of �nite type (SFT) by

SL = {x ∈ ΣZ
d

: no element of L appears in x}here, a pattern a ∈ ΣF is said to appear in a 
on�guration x if (Tux)|F = a for some u ∈ Zd.The set SL is easily seen to be 
losed and invariant under the shift a
tion, so may be regardedas a Zd-dynami
al system. Ba
kground on topologi
al dynami
s 
an be found in se
tion 2.If ∆ is some other �nite alphabet and Y ⊆ ∆Z
d is a subshift whi
h is the fa
tor of an SFT,then Y is 
alled a so�
 shift.SFTs and so�
 shifts have been studied in topologi
al dynami
s, physi
s and 
omputer s
ien
eas models for intera
ting systems, and in dimensions d ≥ 2 they are 
apable of very 
omplexbehavior. Indeed, not only are these systems hard to analyze but most questions about them areformally intra
table, in the sense that, for most non-trivial questions, there is no algorithm whi
hDate: August 20, 2008.2000 Mathemati
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2 MICHAEL HOCHMANde
ides them given a �nite presentation of the system as input. [Ber66, Rob71, Hur87, HKC92,Kar94℄. The re
ursive stru
ture of SFTs is also known to be 
omplex [Mye74, Hur90, Sim07℄.One 
an nonetheless ask meaningful questions about the dynami
s of SFTs and so�
 shifts.Resear
h in this dire
tion has been motivated by questions from parti
le physi
s and 
rys-tallography, and also by the mathemati
al theory of one-dimensional SFTs and so�
 shifts,whi
h are in many respe
ts quite well understood. Many striking examples have emerged, e.g.[Moz89, BS94℄, and also the feeling that almost anything 
an happen for higher dimensionalSFTs. Below we show that in a 
ertain pre
ise sense this is true.1.2. E�e
tive systems and suba
tions of SFTs and so�
 shifts. In this work we studySFTs and so�
 shifts through their suba
tions, by whi
h we mean the restri
tion of the Zd-a
tionto a subgroup H < Zd. We are interested in understanding what dynami
s 
an arise in thisway.1It turns out that to a large extent the subdynami
s 
an be 
hara
terized, and the 
hara
teri-zation is re
ursion-theoreti
. This is another example of a general philosophy that has emergedre
ently: for many 
hara
teristi
s of these systems there is a trivial restri
tion of a re
ursivenature, and this turns out to be the only restri
tion. An example of this is our work in [HM07℄,where the entropies of SFTs and so�
 shifts are 
hara
terized. Another example is the Medvedevdegree invariant introdu
ed by Simpson [Sim07℄.To state our results we require some de�nitions. A sequen
e (an) of integers is re
ursive (R)if there is an algorithm A (formally a Turing ma
hine) that, upon input n ∈ N, outputs an.A set of integers is re
ursively enumerable (RE) if it is the set of elements of some re
ursivesequen
e.By identifying the integers with other sets we 
an speak of re
ursive sequen
es of otherelements. For example, sin
e N ∼= N2 (and the bije
tion 
an be made e�e
tive), we 
an speak ofre
ursive sequen
es of pairs of integers; and in the same way of sequen
es of �nite sequen
es ofintegers.Let {0, 1}N denote the Cantor set and for a �nite I ⊆ N and a ∈ {0, 1}I let
[a] = {x ∈ {0, 1}N : x|I = a}denote the 
ylinder set determined by a. As a ranges over all �nite patterns of this sort, [a]provides a basis of 
losed and open sets for the topology. Noti
e that the set of su
h a's, whi
hparametrizes the 
ylinder sets, 
an be put into e�e
tive bije
tion with N.De�nition 1.1. A subset X ⊆ {0, 1}N is e�e
tively 
losed if its 
omplement is the union of are
ursive sequen
e of 
ylinder sets.21Sin
e passing to �nite index subgroup a
tion on an SFT is still an SFT, and similarly for so�
 shifts, it is notimportant whi
h subgroup we 
onsider, and in formulating our results we will take the 
anoni
al Z

k-subgroupsof Z
d generated by the �rst k of the standard generators e1, . . . , ed of Z

d.2An e�e
tively 
losed set is also the 
omplement of the union of a re
ursive set C of 
ylinder sets, i.e. there is analgorithm that de
ides in �nite time whether a given 
ylinder set [a] is in C. This 
ondition is a-priori strongerand we thank S. Simpson for pointing this equivalen
e out to us.



ON THE DYNAMICS AND RECURSIVE PROPERTIES OF MULTIDIMENSIONAL SYMBOLIC SYSTEMS 3Sin
e there are only 
ountably many re
ursive sequen
es, there are only 
ountably manye�e
tively 
losed sets.We may similarly de�ne e�e
tively 
losed subsets of the Cantor set when parametrized as
ΣZ

d for arbitrary �nite Σ, or 
losed subset of ({0, 1}N)Z
d . Let Tu denote the shift a
tions onthese spa
es.De�nition 1.2. A subset X ⊆ ΣZ

d (Σ �nite) is an e�e
tively symboli
 system (ESS) if it ise�e
tively 
losed and invariant under the shift.A subset X ⊆ ({0, 1}N)Z
d is an e�e
tively dynami
al system (EDS) if it is e�e
tively 
losedand invariant under the shift.3We will also say that a dynami
al system is e�e
tive if it is isomorphi
 to an ESS or EDS.On
e again, both these 
lasses are 
ountable; but we know of no �natural� type of dynami
sof subshifts or totally dis
onne
ted systems whi
h 
annot arise as ESSs or EDSs, respe
tively.Indeed, all 
ombinatorial 
onstru
tions whi
h appear in the literature give systems of this type,assuming they are de�ned by re
ursive parameters (for example, Sturmian sequen
es will beESSs if the rotation and partition used are 
omputable). We note that an expansive EDS is(isomorphi
 to) an ESS, and every ESS is (isomorphi
 to) an EDS (though an ESS 
an also beembedded in ({0, 1}N)Z

d in a non-e�e
tive way).If L is a �nite set of patterns then the set of all translates of patterns from L is an RE set,and thus the SFT SL is an ESS. A symboli
 fa
tor of an ESS is an ESS, so so�
 shifts are ESSs;and the suba
tion of an EDS is an EDS (we prove both these statements in se
tion 3). Thisprovides a restri
tion on the subdynami
s of SFTs:Theorem 1.3. The suba
tion of an SFT or so�
 shift is an EDS.This ne
essary 
ondition turns out to be (almost) su�
ient. We have the following 
hara
-terization of the expansive subdynami
s of so�
 shifts:Theorem 1.4. A symboli
 system is isomorphi
 to the suba
tion of a so�
 shift if and only ifit is e�e
tive.Spe
i�
ally, we 
an realize a Zk-ESS X as the Zk-suba
tion of a Zk+2 so�
 shift; in fa
t,the Zk+2 subshift obtained by extending ea
h 
on�guration in X identi
ally in the dire
tions
ek+1, ek+2 
omplementary to the subgroup Zk, is a so�
 shift. We do not know whether eitherof these statements holds when k + 2 is repla
ed with k + 1.The analog of theorem 1.4 is false for SFTs. Indeed, there are ESSs whi
h 
annot be realizedas suba
tions of SFTs, su
h as the Cha
on system (see proposition 6.2 below). It is an interestingopen problem whether one 
an 
hara
terize the expansive suba
tions of SFTs.3Equivalently, a Z

d-system is an EDS if it is the inverse limit of a re
ursive sequen
e of ESSs. For a system X,this means that X is the inverse limit of a diagram
. . . → Xm

πm−−→ Xm−1 → . . . → X0where Xm ⊆ ({0, 1}m)Z
d and (a) there is a re
ursive array am,n of patterns with am.n having symbols in {0, 1}m,su
h that Xm = S{am,n : n∈N}, and (b) the sequen
e πm is re
ursive (note that they are blo
k 
odes).



4 MICHAEL HOCHMANLet us now turn to the non-expansive 
ase of EDS. Note that in order for an EDS to o

uras the suba
tion of an SFT or so�
 shift, it must �rst of all arise as the suba
tion of some ESS.This is a non-trivial restri
tion, sin
e not all EDS have this property; for example, there existe�e
tive odometers, and these do not arise as the suba
tion of any symboli
 system, e�e
tiveor not (see se
tion 6.2). There are also other obstru
tions; for example, the topologi
al Cha
onsystem is not the suba
tion of an SFT, though it is an e�e
tive symboli
 system and thereforeis the suba
tion of a so�
 shift. See se
tion 6.2.These problems disappear if one is willing to allow a small extension. We shall say that afa
tor map π : Y → X is almost-1-1 if the set of points in X with unique pre-image has fullmeasure with respe
t to every invariant Borel probability measure on X .4 Although weakerthan isomorphism, this relation implies that the statisti
al behavior of the systems Y and Xare identi
al in a strong sense: T indu
es a bije
tion of the invariant probability measures on Xand Y , and for every invariant measure ν on Y the fa
tor map is a 
ontinuous isomorphism of
(Y, ν) and (X, πν).Another type of extension Y → X whi
h may be 
onsidered trivial o

urs when Y extends
X by a dire
t produ
t with a well-understood system, that is, Y = X × W , and the fa
tor isproje
tion onto the �rst 
oordinate. We will deal with the parti
ularly simple 
ase where W isan isometri
 a
tion on a totally dis
onne
ted spa
e.De�nition 1.5. An extension Z → Y of Zk-dynami
al systems is an almost trivial isometri
extension (ATIE) if we 
an interpolate a fa
tor

Z → Y × W → Ywhere W is an isometri
 a
tion on a totally dis
onne
ted spa
e, Z → Y × W an almost-1-1extension, and Y × W → Y is proje
tion onto the �rst 
oordinate.The 
omposition of ATIEs is an ATIE, and ATIEs do not in
rease topologi
al entropy. Theinvariant measures of a system and an ATIE extension of it di�er by at most the addition ofsome pure-point rational spe
trum, and for this reason and those explained above ATIEs 
an be
onsidered small from the point of view of the ergodi
 behavior of orbits. We remark, however,that from a purely topologi
al point of view many properties are not preserved by ATIEs, su
has transitivity, expansiveness and equi
ontinuity.Our main result for SFTs is:Theorem 1.6. The suba
tion of an SFT is an EDS. Conversely, if Y is an e�e
tive Zk-system,then there is an SFT X and a Zk-suba
tion of X whi
h is an ATIE of Y .As before, we 
an prove this with X a k+2-dimensional SFT; we do not know if the dimension
an be redu
ed to k + 1. We have quite good 
ontrol of the isometri
 part of the ATIE, and
an make it an odometer. On the other hand, the almost-1-1 part of the extension partly 
omes4Note that the set of points in X with unique pre-image is a Gδ-set. Some authors de�ne almost-1-1 extensionsby the 
ondition that this set is dense. This notion is distin
t from ours, though in the presen
e of a globallysupported invariant measure, and in parti
ular when X is minimal, our de�nition implies the other.



ON THE DYNAMICS AND RECURSIVE PROPERTIES OF MULTIDIMENSIONAL SYMBOLIC SYSTEMS 5from the dynami
s of a 
ertain Turing ma
hine asso
iated to the EDS, and we have little 
ontrolover it. We mention that the SFT X whi
h we 
onstru
t in the proof has entropy 0 with respe
tto the full Zk+2-a
tion.It is not 
lear how far one 
an redu
e the size of the extension in theorem 1.6. We show inproposition 6.2 below that if the suba
tion of an SFT fa
tors onto the Cha
on system then, withrespe
t to the unique invariant probability measure on the fa
tor, almost every �ber 
ontainsmore than one point, and in parti
ular the extension 
annot be almost-1-1. It remains an inter-esting question whether every e�e
tive system has a �nite-to-1 extension that is the suba
tionof an SFT.1.3. Cellular automata. A 
ellular automaton (CA) is a 
ontinuous transformation f : ΣZ
d

→

ΣZ
d of the full shift (with Σ �nite), whi
h 
ommutes with the shift a
tion in the sense that

Tuf = fTu for u ∈ Zd. The Curtis-Hedlund-Lyndon [Hed69℄theorem 
hara
terizes su
h maps asthose whi
h are de�ned lo
ally: the site u in f(x) is determined by the 
oloring of a neighborhoodof u in x, and the size of the neighborhood is independent of x. This makes CA an attra
tivedis
rete model for intera
ting systems. CAs were introdu
ed in the 1940's by von Neumann[vN66℄. They were popularized by J. Conway in the 1970's with the introdu
tion of his �Gameof Life�, and in the 1980's by the work of Wolfram [Wol84℄. The re
ursive properties of CA havebeen studied by several authors [Hur87, CHY90, Hur90, Kar94, Sut05℄, and as for SFTs, mostproperties are unde
idable. See [Kar05℄ for a re
ent survey.The limit set of a CA f is Λ = ∩∞
n=1f

n(ΣZ
d

); this is the largest set on whi
h f a
ts surje
tively.In order to get an a
tion whi
h is also inje
tive, we pass to the natural extension (Λ∗, f∗) of
(Λ, f), i.e. the inverse limit of the diagram . . .

f
−→ Λ

f
−→ Λ

f
−→ . . .

f
−→ Λ. This is the smallestinvertible system extending (Λ, f); we 
all (Λ∗, f) the limit Z-a
tion of f .The 
lasses of limit Z-a
tions of CA and of Z-suba
tions of SFTs are 
losely related; they areessentially the same after removing the unavoidable periodi
 point from the limit sets of CAs.See se
tion 3 for details. Using this, theorem 1.6 givesTheorem 1.7. The limit Z-a
tion of a CA is an EDS. Conversely, if Y is a Z-EDS, then thereis a 3-dimensional CA f su
h that, after removing from its limit Z-a
tion a �xed point and itsbasin of attra
tion, the remaining system is an ATIE of Y .We do not know to what extent theorem 1.7 holds in dimension 1 and 2, or what analog theremay be for one-dimensional CA and for inje
tive or surje
tive CAs in any dimension.1.4. Appli
ations.Entropy of CAs. Entropy is perhaps the most important invariant of a dynami
al system (seese
tion 7.1 for de�nitions). It has been known for some time that, in general, one 
annot 
omputethe entropy of an SFT or CA from its 
ombinatorial des
ription. For SFTs this follows fromBerger's theorem [Ber66℄, and for CA was proved by Hurd, Kari and Culik [HKC92℄.We are interested in a somewhat di�erent question, namely, what are the possible numbersthat 
an arise as the entropy of SFT suba
tions and CAs; a-priori there are only 
ountably many



6 MICHAEL HOCHMANsu
h numbers, and for SFTs in dimension 1 they have a simple algebrai
 
hara
terization [Lin84℄.In [HM07℄, we re
ently proved the following re
ursive-theoreti
 
hara
terization of entropies ofhigher dimensional SFTs:Theorem. [HM07℄ Fix d ≥ 2. Then a real number h ≥ 0 is the entropy of a Zd-SFT if andonly if it is the in�mum of a re
ursive sequen
e of rational numbers.This is a
tually the same 
lass of numbers whi
h arises as the entropies of ESSs. In a similarvein, we 
an now prove the following:Theorem 1.8. For ea
h d ≥ 1, a real number h ≥ 0 is the entropy of a Zd-EDS if and only ifit is the lim inf of a re
ursive sequen
e of rational numbers.Applying theorem 1.8, and the fa
t that ATIEs do not in
rease entropy, we get:Corollary 1.9. For d ≥ 3, the entropies of d-dimensional CA are pre
isely the non-negativenumbers that are the lim inf of a re
ursive sequen
e of rational numbers.Real numbers with various re
ursive properties have been studied in [ZW01℄, where a 
ount-ably in�nite hierar
hy of number types is des
ribed. Let us mention here one interesting fa
t;the 
lass of number whi
h are entropies of EDS (and hen
e of CA) 
ontains numbers whi
h arenot the limit of any re
ursive sequen
e (in 
ontrast, the entropies of SFTs always are). Thusthe entropy of some CAs is truly out of rea
h. This sharpens a theorem of Hurd, Kari andCulik [HKC92℄, who showed that the fun
tion f 7→ h(f), whi
h assigns to a CA f its entropy,
annot be approximated. What we now know is the stronger fa
t that not only 
an the fun
tionnot be approximated, but there are individual values whi
h in a very strong sense 
annot beapproximated.It is an interesting open problem to 
hara
terize the entropies of CA in dimensions 1 and 2.Measures of maximal entropy on SFTs. Interest in measures of maximal entropy on SFTs ismotivated by the study of phase transitions in parti
le physi
s, and there are by now severalexamples of SFTs with multiple measures of maximal entropy [BS94, Q�03℄.Theorem 1.6 gives a general me
hanism for produ
ing SFTs whose measures of maximalentropy behave in various ways. Given a zero-entropy SFT Y ⊆ ΣZ
d , Σ0 ⊆ Σ and k ∈ N,de�ne an SFT W by superimposing one of k new symbols over ea
h symbol in Σ0; formally,take the SFT W ⊆ Y ×{0, 1, . . . , k − 1}Z

d de�ned by the 
ondition that (y, y′) ∈ W if and onlyif y′(u) = 0 whenever y(u) /∈ Σ0. We 
all W the k-extension (with respe
t to Σ0). Then
h(W ) = max{µ(

⋃

σ∈Σ0

[σ]) · log k : µ an invariant probability measure on W}and the measures of maximal entropy are in 1-1 
orresponden
e with the measures maximizingthe quantity above (this approa
h was used in [HM07℄, but the 
ontrol there over Y was poorer).One should note however that this te
hnique 
annot produ
e irredu
ible (or even mixing) ex-amples, sin
e in the pro
edure des
ribed the system we get fa
tors onto Y , whi
h, using ourpresent te
hniques, always has some dis
rete spe
trum.



ON THE DYNAMICS AND RECURSIVE PROPERTIES OF MULTIDIMENSIONAL SYMBOLIC SYSTEMS 7Another interesting 
onsequen
e for CA is that, sin
e there are Z-EDS without measuresof maximal entropy, there must be 3-dimensional CA with this property as well. This is nototherwise obvious.Fa
toring relations. A problem whi
h has re
eived some attention re
ently is that of determiningthe fa
toring relations between SFTs, and parti
ularly the question whether every SFT withentropy ≥ log N fa
tors onto a full shift on N symbols [JM05℄. Using the te
hnique aboveand results from [HM07℄, Boyle and S
hraudner re
ently showed that this is false. As anotherappli
ation, we answer question 2.10 of [BS07℄, albeit in three rather than two dimensions:Proposition 1.10. There is an SFT Y ⊆ ΣZ
3 with entropy log 2 whi
h does not fa
tor onto thefull shift {0, 1}Z

3, and it 
an be obtained as a 4-extension of a uniquely ergodi
 SFT with respe
tto a set of symbols Σ0 having density 1/2. On the other hand, there is an in�nite, uniquelyergodi
 SFT and a set of symbols of density 1/2 whose 4-extension does fa
tor onto the full shifton N symbols.1.5. Organization. The rest of this paper is organized as follows. In the next se
tion we givesome ba
kground in topologi
al dynami
s. In se
tion 3 we dis
uss some general properties ofEDS and prove theorem 1.3. In se
tion 4 we des
ribe some auxiliary 
onstru
tions, and inse
tion 5 we 
onstru
t so�
 shifts and SFTs with spe
i�ed dynami
s, proving theorem 1.4 and1.6. In se
tion 6 we dis
uss the relation between CAs and suba
tions of SFTs, proving theorem1.7, and give some (
ounter-)examples. In se
tions 7 we dis
uss entropy of EDS, and in se
tion8 we prove theorem 1.10 about the fa
toring of SFTs onto full shifts.A
knowledgement. I am grateful to Benjamin Weiss for many interesting and stimulating dis-
ussions. I also thank the referee for a 
areful reading and helpful suggestions.2. Topologi
al dynami
sWe 
olle
t here some standard de�nitions from topologi
al and symboli
 dynami
s.A topologi
al Zd-dynami
al system (X, T ) (sometimes written (X, Zd)) is an a
tion of Zd byhomeomorphisms {Tu}u∈Zd on a 
ompa
t metri
 spa
e X ; in this paper we assume that X istotally dis
onne
ted. Two dynami
al Zd-systems (X, T ) and (Y, S) are isomorphi
, or 
onjugate,if there is a homeomorphism π : X → Y satisfying Suπ = πTu for u ∈ Zd. If π is merely ontothen it is 
alled a fa
tor map from X to Y , and X is 
alled an extension of Y .Let Σ be a �nite set of symbols. The spa
e ΣZ
d of 
olorings of Zd by Σ is 
alled thefull d-dimensional shift over Σ, or just the full shift, and its points are 
alled 
on�gurations.Topologi
ally the full shift is a Cantor set, and it 
omes equipped with a natural Zd a
tion,
alled the shift a
tion, in whi
h u ∈ Zd a
ts via the translation Tu : ΣZ

d

→ ΣZ
d de�ned by

(Tux)(v) = x(u + v)We let e1, . . . , ed denote the standard generators of Zd, and write T1, . . . , Td for the 
orrespondingshift elements.



8 MICHAEL HOCHMANA subset X ⊆ ΣZ
d whi
h is 
losed and invariant to the shift (i.e. TuX = X for u ∈ Zd) is
alled a subshift, or a symboli
 system.By the Curtis-Hedlund-Lyndon theorem [Hed69℄, fa
tor maps between subshifts of the samedimension (but possibly distin
t alphabets) are given by a blo
k 
ode: if Y ⊆ ∆Z

d , X ⊆ ΣZ
dand π : Y → X is a fa
tor map, then there is a �nite F ⊆ Zd and a fun
tion π0 : ∆F → Σ,so that π a
ts on ea
h site of x ∈ ∆Z

d by applying π0 to the lo
al neighborhood of the site:
(πx)(u) = π0((Tux)|F ). The diameter of F is 
alled the window size of π. Conversely, anysu
h map π0 : ∆F → Σ gives rise to a fa
tor map π in this way (the image is automati
ally asubshift).The property of (X, T ) being isomorphi
 to a subshift 
an be 
hara
terized intrinsi
ally: itis equivalent to being totally dis
onne
ted and expansive, i.e. there is some ε > 0 su
h that, forany x 6= y, there is some u ∈ Zd su
h that δ(Tux, Tuy) > ε, where δ is some �xed metri
 (butthe 
ondition does not depend on the metri
). See [Wal82℄.3. Basi
 properties of ESSs and EDSsIn this se
tion we develop some general properties of EDS, in the 
ourse of whi
h we willprove theorem 1.3.Theorem 3.1. A suba
tion of an e�e
tive system is e�e
tive.Proof. Let X ⊆ ({0, 1}N)Z

d be an e�e
tively 
losed subset, invariant under the Zd-shift a
tion,and let H < Zd be a subgroup. Let K ⊆ Zd be a re
ursive 
ross-se
tion of the proje
tion
Zd → Zd/H . Then

({0, 1}N)Z
d ∼= ({0, 1}N×K)Hand the homeomorphism is e�e
tive (it is indu
ed by a 
omputable identi�
ation of (N×K)×Hwith N×Zd). Thus the re
ursive set of 
ylinder sets whi
h together 
onstitute the 
omplement of

X in ({0, 1}N)Z
d is a re
ursive set of 
ylinder sets with respe
t to the new parametrization, andshows that X is an e�e
tive (and 
learly shift-invariant) subset of ({0, 1}N×K)H , as required. �Sin
e an SFT is an ESS, theorem 1.3 follows immediately for SFTs. To obtain the samefor so�
 shifts we �rst need a 
lassi
al fa
t from re
ursion theory. Re
all that a set A ⊆ N isre
ursive if there is an algorithm that, given n ∈ N, de
ides whether n ∈ A.Lemma 3.2. Suppose L ⊆ U is an RE set and R ⊆ U × V is a re
ursive set, and let

M = {b ∈ V : (a, b) ∈ R for some a ∈ L}Then M is RE.Proof. Let A be an algorithm that on input a ∈ U halts if a ∈ L and runs forever otherwise.Let B be the algorithm whi
h, upon input b ∈ V , iterates over all pairs (n, a) ∈ N × U , and forea
h pair runs the algorithm A for n steps (or until it halts) on the input a. If A halts before nsteps are up, it 
he
ks whether (a, b) ∈ R, and if so it halts; otherwise it 
ontinues to the next



ON THE DYNAMICS AND RECURSIVE PROPERTIES OF MULTIDIMENSIONAL SYMBOLIC SYSTEMS 9pair (n′, a′). It is easily seen that this algorithm halts on input b if and only if b ∈ M , so M isRE. �Proposition 3.3. A symboli
 fa
tor of an EDS is an ESS.Proof. Let Y ⊆ ({0, 1}N)Z
d be an EDS and U1, U2, . . . a 
omputable sequen
e of 
ylinder setswhose union are the 
omplement of Y . Let Z ⊆ ΣZ

d be a subshift and π : Y → Z a fa
tor map.We must show that Z is e�e
tive.For ea
h σ ∈ Σ let Cσ = {x ∈ ΣZ
d

: x(0) = σ} and let Vσ = π−1(Cσ). Ea
h Vσ is 
losedand open, so 
an be written as a �nite union of 
ylinder sets. Thus we have a 
on
rete, �niterepresentation of the fa
tor map.A 
ylinder set C ⊆ ΣZ
d interse
ts Z non-trivially if and only if for there is some y ∈ Y with

π(y) ∈ Z. By 
ompa
tness, this o

urs if and only if for ea
h n there is a point y ∈ Y so that
T uy ∈ Vx(u) for u ∈ [−n; n]d. Therefore, C is disjoint from Z if and only if for some n,

Y ∩
⋂

u∈[−n;n]d

T−uVx(u) = ∅whi
h o

urs if and only if for some n, k,
⋂

u∈[−n;n]d

T−uVx(u) ⊆
k⋃

i=1

UiIn summary,
C ∩ Z = ∅ ⇔ ∃n, k

⋂

u∈[−n;n]d

T−uVx(u) ⊆
k⋃

i=1

UiNow, the relation on the right hand side is 
omputable, sin
e the Boolean operations between
ylinder sets are 
omputable; hen
e by the pre
eding lemma, we see that the 
olle
tion of 
ylindersets disjoint from Z is RE, as required. �Corollary 3.4. An expansive e�e
tive system is isomorphi
 to an ESS.4. Auxiliary Constru
tionsIn this se
tion we des
ribe some 
onstru
tions whi
h we use later on in the proof of theorems1.4 and 1.6.4.1. Superposition. Given an SFT X = SL de�ned by a �nite set of patterns L, superpositionis a 
ombinatorial 
onstru
tion whi
h gives an SFT X ′ that fa
tors into (generally not onto) X .Informally, this is done by adding data to ea
h symbol of X and enri
hing L with rules relatingto this new layer of data.More pre
isely, suppose X is an SFT de�ned by a set L ⊆ ΣF . A system Y is superimposedover X if it is obtained by the following pro
ess. (a) Fix a �nite set ∆, and repla
e ea
h symbol
σ ∈ Σ with one or more symbols of the form (σ, δ) ∈ Σ×∆. Let Σ′ be the set of these pairs. Forthe new symbol (σ, δ) ∈ Σ′, we say that δ is superimposed over σ; we also frequently refer to this



10 MICHAEL HOCHMANpair as the symbol σ marked with δ. (b) We extend ea
h pattern a ∈ L ⊆ ΣF in every possibleway to a pattern in a′ ∈ (Σ′)F by superimposing new symbols over ea
h symbol of a. (
) Let
L′ be the extended patterns from (b), together with possibly other patterns. Then the SFT X ′de�ned by L′ is superimposed over X , and has the property that every pattern appearing in X ′
onsists of a ∆-
on�guration superimposed Σ-
on�gurations from X .Note that SL′ may be empty, but if it is not then the map π : X ′ → ΣZ2 whi
h erases thesuperimposed layer of data maps X ′ to a subsystem of X . We say that x ∈ X is representedin X ′ if one 
an turn x into a point of X ′ by superimposing a suitable ∆-pattern over x; i.e., if
x = π(x′) for some x′ ∈ X ′.4.2. Subshifts De�ned by Substitution. One of the building blo
ks of our 
onstru
tionwill be 
ertain SFTs whose 
on�gurations possess a simple hierar
hi
al stru
ture. We will notneed anything more 
ompli
ated than Robinson's 
lassi
al aperiodi
 SFT [Rob71℄, but ratherthan des
ribe that system and the modi�
ations we would require of it, we will instead relyon a general 
onstru
tion due to Mozes [Moz89℄, whi
h allows a shorter and more transparentexposition.For the remainder of this se
tion we �x the dimension d = 2. Given a �nite alphabet Σ, asubstitution rule is a map s : Σ → ΣFk for some integer k > 1, where Fk = {1, . . . , k}2 (in theterminology of [Moz89℄, this is a deterministi
 k× k substitution system with property A). Themap s extends naturally to a map sn : ΣFn → ΣFn·k by identifying ΣFn·k with (ΣFk)Fn .Starting from a single symbol lo
ated at (1, 1) ∈ Z2 and iterating the substitution map, weobtain a sequen
e of 
olorings of Fkn for n = 0, 1, 2 . . .. Su
h patterns are 
alled s-blo
ks. Apoint x ∈ ΣZ

2 is admissible for s if every �nite subpattern of x appears in some s-blo
k. Thesubshift W ⊆ ΣZ
2 asso
iated with s is the set of admissible patterns; this is seen to be 
losedand shift invariant.For ea
h 
on�guration x ∈ W one 
an �nd a derivation tree of x. This is an in�nite treewhose node set V is a disjoint union V = ∪∞

n=0Vn. Ea
h Vn is identi�ed with a kn-periodi
subset V̂n ⊆ Z2 (that is, a 
oset of knZ2) in su
h a way that V̂0 = Z2 and V̂n ⊆ V̂n−1, and nodes
v ∈ Vn, v′ ∈ Vn−1 are 
onne
ted if v̂′ ∈ v̂ + {0, . . . , kn − 1}2, where v̂, v̂′ ∈ Z2 
orrespond to
v, v′ respe
tively. Ea
h node in the tree also 
arries a label from Σ. A derivation tree for x ∈ Wmust satisfy the 
ondition that the labeling of V̂0 agrees with x, and for n > 0, every a ∈ Σand ea
h u ∈ V̂n labeled a, the labeling of the k × k square of elements of V̂n−1 of whi
h u isthe lower left 
orner are labeled a

ording to the blo
k s(a). In other words, the labeling of V̂1
orresponds to a de
omposition of x into k×k blo
ks arranged in a grid, and then repla
ing ea
hblo
k with the symbol from whi
h it is derived; this gives a pattern on a 
oset of kZ×kZ, whi
hwe may identify with a point in ΣZ

2 , de
ompose it into k × k blo
ks and repeat this pro
edureto get the labeling of V̂2, and so on. One 
an prove by indu
tion that a �nite version of thispro
edure 
an be 
arried out n times for ea
h blo
k sn(a), a ∈ Σ; sin
e ea
h sub-pattern of x is
ontained a blo
k of this form, a 
ompa
tness argument now shows that for any x ∈ W these�nite derivations 
an be pasted together 
onsistently, giving a derivation tree for x.



ON THE DYNAMICS AND RECURSIVE PROPERTIES OF MULTIDIMENSIONAL SYMBOLIC SYSTEMS 11A substitution rule s has unique derivation if ea
h x ∈ X has a unique derivation tree. Thederivation tree need not be 
onne
ted; a tree is 
onne
ted if and only if every pair of verti
eshave a 
ommon parent. However, it is easy to see that if C is a 
onne
ted 
omponent of thetree then C ∩ V̂0 is either the whole plane, a half-plane or a quarter-plane, and hen
e there areat most four 
onne
ted 
omponents whi
h meet along horizontal and/or verti
al lines.Theorem 4.1. (Theorem 4.5 of [Moz89℄) Let s : Σ → ΣFk be a substitution rule with uniquederivation and let W be the asso
iated dynami
al system. Then there exists an alphabet ∆,an SFT W̃ ⊆ ∆Z
2 , and a one-blo
k fa
tor map ϕ : W̃ → W su
h that x ∈ W has a uniquepre-image under ϕ whenever the derivation tree of x is 
onne
ted.Note that theorem 4.1 is false in dimension d = 1.Corollary 4.2. Let s be a substitution rule with unique derivation and ϕ : Ŵ → W as in theorem4.1. Then ϕ is an almost-1-1 extension with respe
t to the a
tion of Tu for any u /∈ Ze1 ∪ Ze2.Proof. To any x ∈ W let Dx denote its derivation tree, and to x asso
iate the 
olle
tion

Cx = {C ∩ V̂0 : C is a 
onne
ted 
omponent of Dx}The fun
tion C : x 7→ Cx is measurable and takes on 
ountable many values. Note thata

ording to our identi�
ation of tree nodes with points in the plane, the tree is a
ted on by theshifts in a natural way, and in parti
ular CTux = Tu(Cx), where Tu a
ts on Cx by shifting ea
helement of Cx. If Cx 
ontains a half- or quarter-spa
e then T n
u Cx ∩ Cx = ∅ for n ∈ Z, be
ause

u 6∈ Ze1 ∪ Ze2; hen
e any Tu-invariant measure gives mass 0 to those x with Cx non-trivial.Hen
e by the Poin
are re
urren
e prin
iple, the set of x's with dis
onne
ted derivation treehas measure zero for every Tu-invariant probability measure on W , and the 
laim follows fromtheorem 4.1. �4.3. Almost Odometers. Fix 2 ≤ p ∈ N for the remainder of this se
tion, and 
onsider thesubstitution s : {◦, •} → {◦, •}{1,...,p}2 de�ned by the rule that maps • to a p× p blo
k with •'son the diagonal in dire
tion ր and ◦'s everywhere else, and maps ◦ to the same blo
k ex
eptthat the upper right 
orner is a ◦ instead of a •. For p = 5 this gives the rule
• 7→

◦ ◦ ◦ ◦ •

◦ ◦ ◦ • ◦

◦ ◦ • ◦ ◦

◦ • ◦ ◦ ◦

• ◦ ◦ ◦ ◦

◦ 7→

◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ • ◦

◦ ◦ • ◦ ◦

◦ • ◦ ◦ ◦

• ◦ ◦ ◦ ◦Let Ω = Ωp denote the dynami
al system de�ned by these rules. See �gure 4.1 for three iterationsof the rule with p = 2.Let us say that a row or 
olumn of an s-blo
k is of type r if the •'s in it appear in an in�nitearithmeti
 progression with gap pr, and of type ≥ r if it is of type r′ for some r′ ≥ r; for �nitesequen
es we adopt the 
onvention that a sequen
e of length n 
ontaining only one o

urren
e
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Figure 4.1. Three iterations of the substitution for p = 2.of • has period n, and if it has no o

urren
es of • its period is ∞. One readily veri�es byindu
tion that for ea
h r ≥ 1 and all su�
iently large blo
ks a ∈ {sn(•), sn(◦)}, the set

Ir(a) = {i : 1 ≤ i ≤ pn : the i-th 
olumn of a is of type ≥ r}is the interse
tion of [1; pn] with a 
oset of pr−1Z. Similarly the set
Jr(a) = {i : 1 ≤ j ≤ pn : the j-th row of a is of type ≥ r}is the interse
tion of [1; pn] with a 
oset of pr−1Z.We de�ne Ir(ω), Jr(ω) similarly for in�nite 
on�gurations ω ∈ Ωp, ex
ept that now a row or
olumn with a unique • is also 
onsidered type ∞. It follows from the �nite 
ase that in thein�nite 
ase Ir, Jr are 
osets of pr−1Z.Denote Zk = Z/kZ, and let Ut = Zpt ×Zpt , and let T1, T2 : Ut → Ut be the maps T1(m, n) =

(m − 1, n) mod pt and T2(m, n) = (m, n − 1) mod pt. We 
onsider T1, T2 as the generators ofa free abelian group Z2 a
ting on Ut, giving a Z2-dynami
al system (the a
tion of 
ourse isnot faithful). Let πt denote redu
tion modulo pt (we allow πt to a
t in the obvious manner onelements of Z, Zpt′ and Ut′ for t′ ≥ t). We obtain the following 
ompatible sequen
e of fa
tormaps of Z2 dynami
al systems:(4.1) . . .
πt−→ Ut

πt−1

−−−→ . . .
π1−→ U1De�ne π̂r : Ω → Ur by

π̂r(ω) = (πr(Ir+1(w)), πr(Jr+1(w))note that πr(Ir+1) is well-de�ned be
ause Ir+1, Jr+1 are pr-periodi
, and that πr−1 ◦ π̂r = π̂r−1be
ause the Ir's and Jr's are de
reasing sequen
es. Note also that by de�nition
Ir(Tae1+be2

w) = Ir − a

Jr(Tae1+be2
w) = Jr − bso π̂(Tuω) = Tuπ̂(ω), where u ∈ Z2 and Tu is the element of the appropriate Z2-a
tion generatedby T1, T2. We see that the system of fa
tors π̂r : Ω → Ur is 
ompatible with the maps πr :

Ur+1 → Ur, so Ω fa
tors into the inverse limit of the sequen
e (4.1), whi
h we denote by U .Sin
e the Z2-a
tion on ea
h Ur is transitive (in the stri
t sense that every orbit is the entire
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e), we see that Ω a
tually maps onto U . Denote the fa
tor map thus de�ned by ϕ : Ω → U .Note that ϕ(ω) 
ompletely determines the sets Ir(ω), Jr(ω)With a little more work, we 
an show that ϕ is almost-1-1 with respe
t to the a
tion of
Tu for any u 6∈ Ze1 ∪ Ze2. In fa
t, another indu
tion shows that given large n and a blo
k
a ∈ {sn(•), sn(◦)}, the sets I ′r = Ir−1 \ Ir and J ′

r = Jr−1 \ Jr uniquely determine the pattern
a|I′

r×J′

r
. Now, for ω ∈ Ω, the point ϕ(ω) determines the sets Ir(ω), Jr(ω), and these in turndetermine sets I ′r, J

′
r de�ned as above, and a|I′×J′ is determined by ϕ(ω). It is easy to 
he
kthat Z \ ∪∞

r=1I
′
r 
ontains of at most one point i∗, and similarly Z \ ∪∞

r=1J
′
r 
ontains at mostone point j∗, so w is determined by ϕ(ω) ex
ept possibly on the 
olumn {i∗} × Z and the row

Z×{j∗}. We 
all these the ex
eptional rows and 
olumns, if they exist. The set of 
on�gurations
ontaining ex
eptional rows or 
olumns is wandering with respe
t to the a
tion of any Tu with
u 6∈ Ze1 ∪ Ze2 (the argument is similar to 
orollary 4.2), so for any Tu-invariant measure on Ωalmost every point is the unique pre-image of its image under ϕ. We have shown that for su
h
u, (Ω, Tu) is an almost-1-1 extension of (U, Tu).Let Ω̂ = Ω̂p be the SFT 
over of Ωp promised by theorem 4.1. The division of ω ∈ Ωinto 
olumns of type r + 1 but not r uniquely determines the lo
ations of blo
ks of the type
sr(•) and sr(◦) in ω, be
ause the right 
olumn/top row of these blo
ks 
an only be lo
ated on
olumns/rows whi
h are type r + 1 but not r. This shows that s has unique derivation, andit follows from 
orollary 4.2 that (Ω̂, Tu) is an almost-1-1 extension of (Ω, Tu), and hen
e of
(U, Tu), for every u 6∈ Ze1 ∪ Ze2.Finally, �x ω ∈ Ω and a segment I ⊆ Z, and 
onsider the segments I ′n = I ×{n} obtained byembedding I in Z2 and translating it verti
ally a distan
e of n. Ea
h I ′n lies in a row of type rfor some r = r(n), and every r o

urs as r(n) for some n. Now, it is easily seen that if a rowof type r 
ontains a • in the i-th 
olumn then a row of a di�erent type 
annot 
ontain a • inthis 
olumn. Hen
e I ′n 
an 
ontain a • in 
olumn i only when it interse
ts a row of type r butnot r − 1. It follows that for any |I| + 1 distin
t values of r, at least one of them is su
h thatwhen I ′n is 
ontained in a row of type r then it does not 
ontain any •'s; in parti
ular, one ofthe segments I ′0, I

′
1, . . . , I

′
|I| 
ontains no •'s. A similar statement holds for translates of {0} × Iin the e1 dire
tion.4.4. Re
tangular partitions of Z3. An important role in our 
onstru
tions will be playedby Z3-SFTs whose 
on�gurations partition Z3 into re
tangular regions in a spe
ial way. By are
tangle we mean a set of the form {i} × I × J ⊆ Z3 where I, J ⊆ Z are segments of integers,possibly in�nite on one or both sides. Write Hi = {i} × Z × Z, and identify 
on�gurations on

Hi with 
on�gurations in Z2; thus for a re
tangle {i} × I × J ⊆ Hi we will say that |I| is thewidth and |J | the height, and refer to e2 as the horizontal dire
tion and e3 as the verti
al one.We next 
onstru
t a Z3-SFT W and a fa
tor map ρ from W into a subshift de�ned over thealphabet {◦, •}, su
h that for w ∈ W the 
on�guration ρ(w)|Hi

onsists of rows and 
olumnsof •'s, and all other symbols are equal to ◦. Su
h a 
on�guration 
an be naturally interpretedas indu
ing a partition of Hi into re
tangles, e.g. with the 
onvention that the bottom and left
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tangle belong to the re
tangle, and the other borders do not. We 
all su
h a
on�guration a re
tangular partition.We begin with the 2-dimensional SFTs Ω̂3 and Ω̂5 of the previous se
tion, and extend ea
h ofthem to a 3-dimensional SFT as follows. We identify 
on�gurations of Ω̂3 with 
on�gurationsin the plane Z × Z × {0}, with e1 ∈ Z2 identi�ed with e1 ∈ Z3 and e2 ∈ Z2 with e2 ∈ Z3, andextend the symbols in the e3 dire
tion; we obtain the system
Ŵ3 = {x ∈ ΣZ

3

: ∃ω ∈ Ω̂3 with x(i, j, k) = ω(i, j) for i, j, k ∈ Z}Similarly, we identify 
on�gurations of Ω̂5 with 
on�gurations in the plane Z × {0} × Z, with
e1 ∈ Z2 identi�ed with e1 and e2 ∈ Z2 with e3. We obtain the system

Ŵ5 = {x ∈ ΣZ
3

: ∃ω ∈ Ω̂5 with x(i, j, k) = ω(i, k) for i, j, k ∈ Z}We de�ne W3, W5 similarly starting with Ω3, Ω5; there are natural fa
tor maps Ŵ3 → W3 and
Ŵ5 → W5 indu
ed from the fa
tor maps Ω̂3 → Ω3 and Ω̂5 → Ω5, respe
tively. Both Ŵ3 and Ŵ5are SFTs, and that the a
tion of Tu on ea
h is an almost-1-1 extension of an isometri
 systemas long as u /∈ ∪3

i=1Zei.Let W = Ŵ3 × Ŵ5, and de�ne the fa
tor map ρ on W so that ρ(w′, w′′)(u) = • if andonly if one of the proje
tions of w′, w′′ onto W3, W5, respe
tively, 
ontains a • at u. Thus ea
h
w = (w′, w′′) ∈ W indu
es, via ρ(w), a partition of Z3 into re
tangles. See �gure 4.2.Proposition 4.3. Let y = ρ(w) for some w ∈ W .(1) There are at most �nitely many planes Hi 
ontaining in�nite re
tangles in y.(2) For ea
h �nite horizontal segment I ⊆ {0} × Z × {0}, ea
h M > |I| and ea
h N ∈ N,there is a translate of I in the dire
tion e1 whi
h is 
ontained in some re
tangle Rindu
ed from y, with width between M and M · 3|I|+2, and height > N .Proof. The �rst statement follows from the fa
t that points in Ω̂p 
ontain at most one ex
eptionalrow or 
olumn.Next we verify the se
ond statement. Fix a point w ∈ W indu
ed by a w′ ∈ Ω̂3 and w′′ ∈ Ω̂5,�x a segment I ⊆ Z, M > |I| and N ∈ N, and let I ′ = {0}×I×{0}. A translate I ′+ne1 is lo
atedbetween two verti
al lines in Hn at distan
e ℓ from ea
h other if and only if {0} × I + ne1 is ina 
olumn in w′ between two •'s at distan
e ℓ apart. The fa
t that this holds for some translateand M ≤ ℓ ≤ M · 3|I|+2 follows from the remark at the end of se
tion 4.3, and this o

urs fora set of n's whi
h has period 3k for some k. Similarly, a translate I ′ + ne1 is lo
ated in Hnbetween horizontal lines at distan
e > N from ea
h other if and only if ne1 is on a 
olumn in
w′′ between •'s at least > N apart. This o

urs for a set of n's with period 5m for some m.Sin
e 3, 5 are relatively prime, there is an n satisfying both simultaneously. �From the �rst part of the proposition we dedu
e the following, as in 
orollary 4.2:Corollary 4.4. For any u ∈ Z3 \H0 and for any Tu-invariant probability measure µ on W , theset of w su
h that ρ(w) 
ontains in�nite re
tangles has µ-probability 0.
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tangle

Ŵ
∗
3 : "Verti
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∗
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e2

e1

e2
e2

e1

Figure 4.2. Two 
omponents of a point in W and an indu
ed re
tangle.4.5. Turing Ma
hines in Re
tangles. The 
lassi
al Turing ma
hine is an automaton witha �nite number of internal states whi
h reads and writes data on a one-sided in�nite arrayof 
ells indexed by N, 
alled the tape. Ea
h 
ell 
ontains one symbol from a �xed alphabet.The 
omputation begins with the ma
hine lo
ated at the 0-th (leftmost) 
ell and in a spe
ialinitial state, and the tape is initially blank, or 
ontains some data whi
h is the input to the
omputation. The state of the tape along with the lo
ation and internal state of the ma
hineare 
alled a 
on�guration; a 
on�guration uniquely determines all future 
on�gurations. The
omputation pro
eeds in dis
rete time steps. At ea
h iteration the ma
hine is lo
ated at some
ell. The ma
hine reads the symbol at its 
urrent positions and, based on this data and onits internal state (and only on these parameters), it performs three a
tions: (a) it repla
es the
urrent data symbol with a new one, (b) it moves one 
ell to the left or to the right, and (
)it updates its internal state. The 
omputation may halt after a �nite number of steps if thema
hine either moves o� the tape (steps left at 
ell 0) or enters a designated state, 
alled thehalting state. Barring these o

urren
es, the 
omputation 
ontinues forever.



16 MICHAEL HOCHMANAlthough a very simple model, any algorithm written in a modern 
omputer programminglanguage 
an be implemented as a Turing ma
hine, and it is generally a

epted that any e�e
tive
omputation 
an be performed by a Turing ma
hine; this is Chur
h's thesis. For ba
kgroundand basi
 fa
ts on this subje
t, see [HU79℄.4.6. Representing Turing ma
hines in SFTs. It is well known that one 
an use SFTs torepresent the runs of Turing ma
hines. Given a ma
hine T , we �rst �x an en
oding of the
on�gurations of the ma
hine as bi-in�nite sequen
es of symbols (mark the 
ells at positions
< 0 as �o� limits� by using some spe
ial symbol), with ea
h 
ell 
ontaining a symbol from thetape alphabet and possibly the state of the ma
hine, indi
ating that the ma
hine is lo
atedat that position. Now 
onsider two-dimensional 
on�gurations in whi
h ea
h row representsa 
on�guration of the ma
hine, and is obtained by iterating by one step the 
omputation inthe row below it. The transition from row to row is determined lo
ally, and 
an be en
odedin the rules of an SFT, giving a system whose 
on�gurations des
ribe in�nite 
omputations ofthe ma
hine, assuming their rows represents states of the ma
hine. To make this work onemust allow the initial 
on�guration of the ma
hine to remain un
hanged so that it 
an extendin�nitely downward; then every in�nite (non-halting) run of the ma
hine 
an be represented asa two-dimensional array in whi
h the initial 
on�guration o

urs for all negative times, say, andthe 
omputation starts at row 0; and no halting run 
an be represented. Of 
ourse, in additionto arrays representing runs the SFT will also 
ontain �pathologi
al� 
on�gurations whi
h donot 
orrespond to 
omputations, su
h as 
on�gurations 
ontaining only data and no ma
hine,tapes with multiple ma
hines, or 
omputations whi
h extend ba
k in time inde�nitely and donot begin in an initial state.If one wants better 
ontrol of these matters, one 
an start with an �infrastru
ture� layer whi
hpartitions spa
e into re
tangles, su
h as the SFT W 
onstru
ted in the previous se
tion. Thenwe 
an superimpose a layer in whi
h ea
h re
tangle represents a �nite portion of a ma
hine runon the re
tangle, with the lower border of ea
h re
tangle initialized to a blank tape and thema
hine starting in the lower left 
orner in its initial state (this 
an be enfor
ed by requiringthat the data superimposed over a point in one of the re
tangular partition's horizontal linesis the �blank� symbol, and over the interse
tion of a horizontal and verti
al line there must besuperimposed the ma
hine in its initial state. Both these 
onditions are lo
al). Note that westill have no 
ontrol over initialization of in�nite re
tangles.A 
ru
ial observation is the following. If the ma
hine halts on blank input, then su�
ientlylarge re
tangles 
annot be 
ompleted by this tiling s
heme; sin
e ea
h 
on�guration of W 
on-tains arbitrarily large re
tangles this means the system we have de�ned is empty. On the otherhand if the ma
hine does not halt, then the system is not empty. One te
hni
al point to note isthat there are 
on�gurations 
ontaining re
tangles mu
h higher than they are wide. In this 
aseit 
an o

ur that the ma
hine tries to move past the right border of the re
tangle in the 
ourseof the 
omputation. If this o

urs then no further 
hanges o

ur in the 
on�guration, sin
e on
eit is gone it 
annot 
ome ba
k, but a pattern 
an still be superimposed over this re
tangle. In
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ase the 
on�guration on the re
tangle does not 
oin
ide with the true 
omputation viewedthrough this re
tangle, but this does not a�e
t our previous analysis.Following Robinson, this 
onstru
tion 
an be used to prove that it is unde
idable whether anSFT is empty. Indeed, it follows that if there were an algorithm for de
iding emptiness of anSFT then we 
ould use it to de
ide if a given Turing ma
hine halts by 
onstru
ting from T theSFT above and 
he
king if it is empty.4.7. Real-time Turing ma
hines. It will be 
onvenient for us to work with a slightly modi�edmodel of a Turing ma
hine, in whi
h the ma
hine also re
eives data in �real time� (that is, in the
ourse of the 
omputation) from some external sour
e. To model this we use ma
hines whi
hhave two tapes, the input tape, whi
h the ma
hine 
an read but 
annot write to, and whosestate at ea
h moment is determined externally and 
an 
hange independently at ea
h iterationof the 
omputation; and the memory tape, whi
h is initially blank, and whi
h behaves like theordinary tape: the ma
hine 
an both read and write to it, and other than 
hanges made by thema
hine, it retains its data unaltered from step to step. There is still only one ma
hine head,whi
h at ea
h step reads a symbol from ea
h of the tapes.This model will o

ur in our 
onstru
tion as follows. We will start with the produ
t W ×

X , where X is some SFT, and superimpose a layer so that re
tangles indu
ed by W 
ontainrepresentations of runs of a 
ertain Turing ma
hine of the modi�ed type. Note that the rows ofea
h re
tangle 
ontain a row of symbols 
oming from the X 
omponent, and these will serve asthe data on the input tape, so su

essive rows in X provide su

essive rows of input. The memorytape is simulated in the usual manner as part of the ma
hine's 
on�guration, represented bysymbols from the superimposed layer.In our appli
ation we will want the ma
hine to be able to read (and store for later use) ksymbols from the i-th 
ell of the input tape in the 
ourse of k 
onse
utive time steps, where i, kare determined in the 
ourse of the 
omputation. This 
annot be implemented in the ma
hinemodel we have des
ribed, be
ause after reading a symbol the ma
hine must take time to storeit out of the way, and by the time it gets ba
k to the i-th 
ell it will have missed one or moreinput symbols, whi
h are 
onstantly 
hanging.However, we 
an implement this fun
tionality in the SFT representation with the followingtri
k. Assume for simpli
ity that the input language is {0, 1}. We assume that the memorylanguage 
ontains the symbols 0, 1, and in addition a pair of spe
ial symbols 0̂, 1̂. These spe
ialsymbols are not merely symbols, but are simple automata in their own right: when 0̂ or 1̂ appearsin the memory tape, it tends to move one step to the right with ea
h time step, overwritingwhatever was there before (the 
ell it previously o

upied be
omes blank, unless written to bythe ma
hine or moved into by another spe
ial symbol). The only thing that 
an stop a movingspe
ial symbol is an ordinary symbol 0 or 1, or a spe
ial stop symbol `|'. When a moving symbol
0̂ or 1̂ 
omes up against a 0, 1 or `|' from the left it turns into an ordinary 0 or 1, respe
tively.Furthermore this transformation is instantaneous: a spe
ial symbol 
annot be the neighbor of
0, 1 or `|'. Thus a 
hange from spe
ial to ordinary symbol propagates instantly to the left. For
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e
x0̂1̂1̂y|on the memory tape, and x, y 6= 0, 1, 0̂, 1̂, |, then after one more time step we will have
xb011|where b is the blank symbol. Breaking this down, what happened is that ea
h of the spe
ialsymbols moved one step to the right (the rightmost one overwriting the y), 
ame up against a'|', turned into a 1. Therefore its neighbor on the left turned into a 1 and the next symbol to theleft into a 0. This instantaneous transformation 
annot be implemented in a one-dimensionalautomaton on rows be
ause it requires transmission of information a
ross long distan
es, butis easily implemented as part of the SFT rules. It is similar to the instantaneous ma
hines ofRobinson [Rob71℄, and we omit the details. Finally, this instantaneous 
hange will also a�e
tthe ma
hine's state as follows: there is a spe
ial state s of the ma
hine so that if the ma
hinewas lo
ated at a 
ell 
ontaining a spe
ial symbol 0̂ or 1̂, and in the next step its neighbor onthe right is 0, 1 or '|', then the ma
hine enters state s.Returning now to our obje
tive, if the ma
hine wants to read k input symbols from 
ell i at
onse
utive times, it �rst erases the memory 
ells between i and i + k, and writes a ′|′ at 
ell

i + k. It then returns to 
ell i, and enters a spe
ial state t. While in this state all it does is reada symbol 0 or 1 from the input tape, and print 0̂ or 1̂, respe
tively, on the memory tape. Thingshave now been arranged so that the sequen
e of symbols printed moves one step to the rightwith ea
h time step, making room for the new symbol, and this 
ontinues until k symbols havebeen read. At that point the segment [i; i + k − 1] is �lled with 0̂'s and 1̂'s, and the rightmosthas 
ome up against the �stop� symbol; this transmutes the symbols to ordinary symbols andfor
es the ma
hine out of the state t and into the state s, at whi
h point it resumes its usualoperation, but has at its disposal the k symbols of input re
orded to its right on the memorytape.We introdu
e one more modi�
ation: the ma
hine may also run on �nite tapes, i.e. tapeswhi
h extend only a �nite distan
e to the right. We enable the ma
hine to dete
t when it is nearthe right side of the tape, and use this in its de
ision pro
edure. We note that we have usedmemory to the right of a 
ell to store the input data 
aptured at that 
ell, and this won't worknear the right edge of the tape, but one easily introdu
es a similar pro
edure, whose details weomit, whi
h uses memory to the left of the 
ell. We remark that this feature will be used whenwe run ma
hines that need to read data from the entire width of their �nite tape several times.If not for this, we 
ould just have de�ned that the ma
hine halts when it tries to store data o�the right end of the tape.We 
all ma
hines of the type above, whi
h are Turing ma
hines whi
h 
an run on �nitetapes and are 
apable of 
apturing k bits of input in real time for arbitrary k, real-time Turingma
hines. Together with the previous dis
ussion, we have proved the following theorem:
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hine with input language Σ, and let X ⊆ ΣZ
3be an SFT. Then there is an SFT Z superimposed over W × X so that (w, x) ∈ W × X isrepresented in Z if and only if, for ea
h re
tangle R of dimensions m × n indu
ed by w, whenthe ma
hine T is run and input data de�ned by the array x|R, it runs at least n steps or leavesthe region [1; m] in less than n steps.We remark that any ordinary Turing ma
hine 
an be implemented trivially as a real-timeTuring ma
hine by simply not using any of the added fun
tionality.5. Realizing EDS as suba
tions of SFTs and sofi
 shiftsIn this se
tion we prove theorems 1.4 and 1.6. We begin with theorem 1.4, whose proof isslightly easier.5.1. Realizing ESSs as suba
tions of so�
 shifts. We prove theorem 1.4 for Z-systems,that is, we show that every one-dimensional ESS (= expansive EDS) is the suba
tion of a 3-dimensional so�
 shift. The proof of the general 
ase is very similar, requiring one to de�nehigher-dimensional analogues of the re
tangular partitions des
ribed in the previous se
tion,and a de�nition of Turing ma
hines with multidimensional tapes. These modi�
ations arestraightforward, and in the interest making the presentation readable we omit them.Let L ⊆ Σ∗ be a RE set of �nite sequen
es over Σ; we are out to realize the system SL ⊆ ΣZas the suba
tion of a 3-dimensional so�
 shift. We will do so for the suba
tion generated by thetransformation T̃ = Te1+e2+e3

.Let Y ⊆ ΣZ
3 be the shift of �nite type de�ned by the 
onditions y(u) = y(u+e1) = y(u+e3) for

u ∈ Z3, so symbols are 
onstant in dire
tions e1 and e3. Let π : Y → ΣZ be the map (πy)(n) =

y(ne2); a moment's re�e
tion shows that π 
onjugates (Y, T̃ ) to the full one-dimensional shiftover Σ. Let YL = π−1(SL).Let W be the system de�ned in se
tion 4.4, and set Z0 = Y × W . For a re
tangle R =

{k} × I × J and y ∈ Y we de�ne π′
R(y) ∈ Σ∗ to be the word of length |I| indu
ed by y on thebottom row of R, that is: (π′

Ry)(i) = y(ke1 + ie2) for i ∈ I. See �gure 5.1We now superimpose a layer over Z0 whose obje
t is to �kill� points (y, w) ∈ Z0 with y 6∈ YL.This is done using theorem 4.5, utilizing the re
tangles R indu
ed by w to represent runs ofTuring ma
hines whi
h use as input the pattern π′
R(y) indu
ed by y on the bottom edge of there
tangle, and use the verti
al (e3) dire
tion to represent time (sin
e symbols in Y are 
onstantin the e3 dire
tion, the input does not 
hange in real-time, and we may use �traditional� Turingma
hines).The ma
hine we run on the re
tangles performs the following 
omputation: it generates theelements of L one after the other (this 
an be done by the assumption that L is RE), and forea
h word it 
he
ks if the word appears in the input. We denote the resulting SFT by Z.We 
laim that the e�e
t of this is that (y, w) is represented in Z if and only if y ∈ YL. Bytheorem 4.5, we need to 
he
k that if y ∈ YL then in every re
tangle the ma
hine does not haltin fewer steps than the height of the re
tangle, and that if y 6∈ YL then there is some re
tangle
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Figure 5.1. The 
on�guration of stripes indu
ed by Y on one of the re
tanglesindu
ed from W . The shades of gray represent symbols on planes perpendi
ularto e2 (or densities of symbols in the 
onstru
tion of se
tion 5.3for whi
h the ma
hine will halt in fewer steps. The �rst statement is obvious. As for the se
ond,for any subword of π′(y), 
orresponding to the word y|{0}×I×{0} for a �nite segment I ⊆ Z,there are translates of I in the dire
tion e1 
ontained in re
tangles of arbitrarily large widthand of height arbitrarily large as a fun
tion of the width; this follows from the se
ond partof proposition 4.3. The word indu
ed by y on this translate is the same as the original word.If the word is in L, then when the width and height are large enough the ma
hine will haltprematurely.One must be a little 
autious regarding the analysis above, sin
e it depends on the implemen-tation of the algorithm the ma
hine is running. It is important that the ma
hine �rst 
al
ulatethe n-th disallowed word, and only then 
he
k it against its �input�. Given n, this �rst stage(where we 
ompute the n-th word of L) uses some amount of memory and time whi
h dependsonly on n and not on either the dimensions of the re
tangle or the input, and therefore 
anbe performed on any re
tangle whi
h is wide and high enough. On the other hand, the se
ondstage (where we 
he
k if the word appears in the input) requires an amount of memory whi
hdepends only on n, and time whi
h depends only on n and on the width of the re
tangle, so
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an be performed on any su�
iently wide re
tangle as long as the height is su�
iently large
ompared to its width. These observations imply that if π′(y)|I 
ontains the n-th disallowedword, then there is a re
tangle wide enough and high enough for this to be dis
overed.This 
ompletes the proof of theorem 1.4, sin
e YL is a so�
 shift via the Z3-fa
tor map Z → YLwhi
h forgets the se
ond 
oordinate (the W -
oordinate) and the ma
hine symbols (we need onlyre-parametrize the a
tion to transform T̃ into T e1). More is true: as we show next, this map,whi
h is automati
ally a fa
tor map also with respe
t to the a
tion of T̃ , is an ATIE with respe
tto the T̃ -a
tion. This proves a spe
ial 
ase of theorem 1.6 for ESSs.To see that the fa
tor map is an ATIE with respe
t to T̃ , note that we have the sequen
e offa
tors
Z → YL × W → YL(the �rst map forgets the Turing ma
hine symbols, and the se
ond fa
tors onto the �rst 
oordi-nate). Sin
e (W, T̃ ) is an almost-1-1 extension of an isometri
 system, in order to dedu
e that

Z → YL is ATIE we need to show that Z → YL × W is an ATIE with respe
t to T̃ . To seethis, merely note that given (y, w) ∈ YL ×W , the superimposed layer representing the ma
hinerun is 
ompletely determined on �nite re
tangles; it is undetermined only on in�nite re
tangles(a
tually, only on re
tangles whi
h are in�nite in the −e2 or −e3 dire
tions). However, thiso

urs with probability 0 for any T̃ -invariant measure by 
orollary 4.4. Hen
e Z → YL × W isalmost-1-1 with respe
t to T̃ , and we are done.5.2. The Striped System. We need one more auxiliary 
onstru
tion. Let Ω̂2 be the systemde�ned in se
tion 4.3. In [HM07℄ it was shown how to superimpose a layer over Ω̂2 in su
h away that ea
h row is 
olored 0 or 1, the rows whose 
oordinates are in Jr+1 \ Jr all have thesame 
olor, and any 
ombination of 
olors o

urs subje
t to these restri
tions; in parti
ular ifthere is a row not of the above type it may have any 
olor; there is at most one su
h row (in[HM07℄ this was done with 
olumns in pla
e of rows, but the modi�
ation is trivial). We denotethis system S and 
all it the striped system. The main property of this system that we will useis that, to ea
h s ∈ S, there is asso
iated the density δ(s) of 1's, whi
h is well de�ned, and if shas a unique binary representation then the n-th digit in its binary expansion is a 1 if and onlyif the rows with 
oordinates Jn+1 \Jn are marked 1. It was shown in [HM07℄ that for any s ∈ Sand any ε > 0 one 
an estimate δ(s) with error ε ∈ (0, 1) by observing the 0, 1-pattern indu
edby s on any verti
al segment {i}×J , as long as |J | > 10/ε. We also note that if we �x 0 < δ < 1with unique binary representation, then the set Sδ = {s ∈ S : δ(s) = δ} is a 
losed subset of S,and the proje
tion from it to Ω̂2 is 1-1 ex
ept when the image 
ontains an ex
eptional row, inwhi
h 
ase the proje
tion is 2-to-1 (be
ause the only thing not determined is the 
olor of thatrow).Finally, we note that in [HM07℄ the 
oloring on rows in S was performed in su
h a way that,given the 
oloring of rows, all other auxiliary symbols were determined.5.3. Realizing EDSs. For simpli
ity of notation we prove theorem 1.6 for d = 1. Let X ⊆

({0, 1}N)Z be an e�e
tively 
losed subsystem and let U1, U2, . . . be a re
ursive sequen
e of 
ylinder
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omplement of X . More pre
isely, we are given an algorithm whi
h, oninput k, outputs a fun
tion c : I → C, where I ⊆ Z is �nite and C is the parametrized family of
ylinder sets in {0, 1}N, su
h that x ∈ Uk if and only if x(i) ∈ c(i) for i ∈ I.The method of realizing X as an ATIE of the suba
tion of an SFT is similar to that in se
tion5.1. We will 
onstru
t a 3-dimensional SFT Y so that the 
on�gurations indu
ed by y ∈ Y onea
h translated plane
Fn = spanZ{e1, e3} + ne2en
odes an in�nite sequen
e sn = (sn(1), sn(2), . . .) ∈ {0, 1}N (rather than a single symbol asin the expansive 
ase), and we will want this to be done in a manner whi
h is invariant to theshifts Te1

and Te3
. Assuming we have su
h a representation, we 
an de�ne π : Y → ({0, 1}N)Zby π(y) = (sn)n∈Z; this is a fa
tor map from (Y, T̃ ) to ((ΣN)Z, T1), where T̃ = Te1+e2+e3

. Then,as in the expansive 
ase, we will superimpose another layer whi
h kills all points y ∈ Y whi
hdon't map to X under π.There are many ways to extra
t a sequen
e (sn(i))∞i=1 from a two-dimensional 
on�gurationon Fn: the trivial one is to �x an enumeration of the elements of Z2 and use this to identifyea
h 
on�guration in Fn with an element of ΣN. This solution will not work for us for tworeasons. First it is not invariant to Te1
, Te3

. Furthermore, in order to perform the sele
tionstage of our strategy we will need the information en
oding the sequen
e in ea
h plane Fn tobe �spread all over�; this is be
ause ea
h run of a Turing ma
hine has a

ess to only a smallregion of spa
e, and from this sample it must extra
t su�
ient information about the en
odedsequen
es to make its de
ision. To a

omplish both invarian
e and redundan
y, we en
ode asequen
e in 
on�gurations by using densities of symbols. By making the distribution of symbolsin Fn's su�
iently uniform we 
an guarantee that the 
on�guration on the interse
tion of ea
hlarge enough re
tangle with Fn gives su�
ient information to de
ode in
reasingly long portionsof the en
oded sequen
e.Here are the details. We start with the 2-dimensional system Ω̂2 of se
tion 5.2, and extendit to a 3-dimensional system by sending ea
h 2-dimensional 
on�guration ω ∈ Ω̂2 to the three-dimensional 
on�guration w whi
h is 
onstant in the dire
tion e2, and on F0 the pattern isobtained from ω by identifying the dire
tion e1 ∈ Z2 with e1 ∈ Z3, and e2 ∈ Z2 with e3 ∈ Z3;that is, for ea
h ω ∈ Ω̂2 a point y is de�ned by
y(ie1 + je2 + ke3) = ω(i, k)This de�nes a three-dimensional SFT whi
h we denote Y0. In parti
ular, 
olumns in Ω̂2 
orre-spond to lines in dire
tion e3 in Y0. Also, the T̃ -a
tion on Y0 is an almost-1-1 extension of anisometri
 a
tion.Next, in ea
h plane Fn we extend the 
on�guration to a striped system as in se
tion 5.2;we allow the stripes of ea
h translate of the xz-plane to be 
olored independently. Due to theembedding of Z2 in Z3 whi
h we have 
hosen, stripes now form lines in the dire
tion e1. Denotethe resulting system by Y .
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urring in the plane Fn, so δn(T̃ y) =

δn+1(x). The pattern indu
ed by x on Fn allows us to re
over δn(y); this information 
an alsobe obtained from the pattern indu
ed on any verti
al line (i.e. in dire
tion e3) 
ontained in
Fn, and furthermore in order to re
over δn(y) up to an error of 2−k it su�
es to examine thepattern on any verti
al segment of length e.g. 2k2 in Fn.We will use δn(y) to asso
iate a sequen
e sn of 0's and 1's to y|Fn

. The most straightforwardway to do this would be to set sn to the digits of the binary representation of δn(y), but then werun into ambiguities related to the non-uniqueness of binary expansions of dyadi
 numbers. Toavoid this, we do not de�ne this asso
iation y|Fn
7→ sn for every y ∈ Y , but rather only for those

y's su
h that for every n, the binary expansion of δn(y) is of the form δn(y) = 0.b10b20b30 . . .for some sequen
e bi ∈ {0, 1}. The set Y ′ ⊆ Y so that δn(y) is of this form for all n is a 
losedsubset of Y , though not an SFT. For 
onvenien
e, to ea
h y ∈ Y \Y ′ we de�ne δn(y) = 0, 0, 0, . . .for all n.Let π : Y → (ΣN)Z denote 
ontinuous shift-
ommuting map y 7→ (δn(y))n∈Z from (Y, T̂ ) to
(ZN)Z. We now superimpose another layer over Y whi
h kills points outside of Y ′ and alsopoint from Y ′ whi
h do not proje
t into X under π. As in the expansive 
ase, we �rst take theprodu
t of Y with W , and over this produ
t we superimpose another layer whi
h represents therun of a Turing ma
hine over re
tangles indu
ed by W . We use real-time ma
hines as des
ribedin se
tion 4.6, whi
h allows the ma
hine to read arbitrarily long verti
al segments of data fromthe Y -layer. See �gure 5.1.The ma
hine implements the following algorithm. We denote by yR the two-dimensionalarray of input symbols on a re
tangle R, whi
h in our setting 
omes from the restri
tion of apoint y ∈ Y to a re
tangle R indu
ed by some w ∈ W . The rows of yR represent the inputat a given time and the verti
al one represents passage of time. The algorithm iterates overintegers k ∈ N2 in some order, and for ea
h k it applies the given algorithm whi
h 
al
ulates
Uk. Suppose Uk is the basis element spe
i�ed by a �nite subset I ⊆ Z and c : I → C, where C isthe 
olle
tion of 
ylinder sets in {0, 1}N. Assume that ea
h 
ylinder set c(i), i ∈ I is de�ned byindi
es in a set J ⊆ [1; m] ⊆ N. Next, the algorithm iterates over the tape, and at the i-th 
ellit 
aptures 2m2 verti
al bits from its input, and does this also for 
ells i+1, i+2, . . . , i+ |I|− 1.This data su�
es to determine, up to m bits, the densities δj(y) of the planes Fj to whi
h the
ells i, i + 1, . . . , i + |I| − 1 belong. If these �nite expansions are not of the form 0.b10b10 . . . thealgorithm halts. Finally, with the information at hand the algorithm 
an determine whethersome translate of Uk interse
ts the proje
tion under π of the 
urrent point, and if the answer isa�rmative the algorithm halts.As before, to make this work we assume that the ma
hine �rst 
al
ulates Uk and only then
he
ks it against its �input�. This �rst stage uses some amount of memory and time whi
hdepend only on k, and therefore 
an be performed on any wide enough re
tangle. Again, these
ond stage requires an amount of memory depending only on k, |I|, |J | and time whi
h isadditionally a fun
tion of the width of the re
tangle, so 
an be performed on any re
tanglewhose height is su�
iently large 
ompared to its width. These observations, and the fa
t that
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W indu
es admissible partitions, imply that every subword en
oded by a point in Y will be
he
ked by some ma
hine run in some re
tangle.The above implies that if we let Z denote the resulting SFT then it 
onsists of extensions ofpairs (y, w) with y ∈ Y ′ and su
h that y proje
ts to X via π.To 
omplete the proof we must verify this proje
tion is an ATIE with respe
t to T1. As atthe end of se
tion 5.1 we have map τ : Z → Y whi
h is an ATIE with respe
t to its image, butinstead of the image of τ being the sought-after system, as in se
tion 5.1, we now must proje
tone more time, using the map π : τ(Z)→ Y . But this map is also an ATIE, be
ause we 
anbreak it into

τ(Z) ∼= X × Y0 → X × U → Xwhere the �rst map a
ts 
oordinate-wise as the identity on the �rst 
omponent and as the ATIE
Y0 → U on the se
ond, where U is an isometri
 system; and the se
ond fa
tor map is proje
tiononto the �rst 
omponent. Finally, sin
e the 
omposition of ATIEs is an ATIE, we are done.5.4. Variations. With a little more e�ort the equi
ontinuous system that appears in the ATIEof theorem 1.6 
an be made to be transitive, i.e. an odometer. This 
an be a
hieved if, insteadof the systems Ωp whi
h we 
onstru
ted in se
tion 4.3, we work with systems in whi
h thespe
trum of T1 and T2 
ome from distin
t primes. In this 
ase the a
tion of Tu for u 6∈Ze1∪Ze2will be transitive, i.e. an odometer. We omit the details.We also note that other types of substitution systems may be used instead of odometers. Forthe dynami
al possibilities this provides see [Moz89℄.6. Constru
tions and 
ounterexamples6.1. The Relation Between suba
tions of SFTs and Limit Sets of CAs. There is a
lose 
onne
tion between the a
tion of a CA on the natural extension of its limit set, and one-dimensional suba
tions of SFTs and so�
 shifts: given a system belonging to one of these 
lassesone 
an 
onstru
t a member of the other 
lass whi
h 
aptures most of the dynami
s of theoriginal system.In order to go from a CA f a
ting on ΣZ

d to an SFT, one 
onsiders the subshift X ⊆ ΣZ
d+1de�ned by the property that x ∈ X if and only if x|{i+1}×Zd = f(x|{i}×Zd) for every i ∈ N,where we identify 
on�gurations on {i}×Zd with 
on�gurations on Zd in the obvious way. Sin
e

f a
ts by a lo
al rule this system is an SFT, and sin
e for x ∈ X the sequen
e of 
on�gurations
(x|{n}×Zd)n∈Z 
onstitutes a two-sided f -orbit, the suba
tion (X, T1) is isomorphi
 to the naturalextension the a
tion of f on its limit set.To go the other way, suppose that X = SL ⊆ ΣZ

d is an SFT de�ned by a �nite set L ⊆ ΣEof disallowed patterns, E ⊆ Zd �nite (a standard argument shows that every SFT is of thisform). We 
onstru
t a d-dimensional CA whi
h has similar dynami
s to (X, T1). We do thisby introdu
ing a �destru
tive� symbol whi
h 
omes into being at sites where the SFTs rules arebroken, and �spreads�; and on the other hand the CA a
ts like T1 on legal 
on�gurations. To be
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ise, let ∗ be a symbol not appearing in Σ and let ∆ = Σ∪{∗}. De�ne a CA f : ∆Z
d

→ ∆Z
da
ting on x ∈ ∆Z

d a

ording to the rules:
• If x(u) = ∗, or x(u ± ei) = ∗ for some i = 1, . . . , d, or (Tux)|E ∈ L, then (fx)(u) = ∗;
• otherwise (fx)(u) = x(u + e1).Note that X ⊆ ΣZ

d

⊆ ∆Z
d , and the restri
tion of f to X a
ts like the shift T1. On the otherhand, if x ∈ ∆Z

d

\ X then fx 
ontains a ∗ and this symbol will spread: for any u ∈ Zd we willhave (fnx)(u) = ∗ for all large enough n. Hen
e the 
on�guration 
onsisting of ∗'s is the uniqueattra
ting point of ∆Z
d

\X under f . It follows that the only nontrivial dynami
s of f 
an o

urin X , where f a
ts like T1.6.2. Systems whi
h 
annot be realized as suba
tions. In this se
tion we present someexamples of systems whi
h 
annot be realized as suba
tions of SFTs or so�
 shifts. The �rst
lass of examples are the odometers, de�ned as equi
ontinuous, transitive a
tions on in�nitespa
es. There exist EDS of this type: it is easy to 
he
k that the map x 7→ x + 1 on the groupof 2-adi
 integers is an EDS. As is well known, every automorphism of this system is also givenby a translation. Thus if this system 
ould be realized as a suba
tion of a Zd-a
tion it wouldfollow that the Zd a
tion is itself an equi
ontinuous a
tion; and it is well known the any subshifton whi
h the shift a
ts isometri
ally is �nite, a 
ontradi
tion.Sin
e a dire
t proof is not long we in
lude it.Proposition 6.1. Odometers 
annot be realized as the suba
tion of a symboli
 system.Proof. Suppose to the 
ontrary that U ⊆ ΣZ
d for some d and (U, T ) is an odometer for T = T1(the proof for T = Tuis the same). Fix a 
ompatible metri
 on U and 
hoose ε > 0 so that

d(u, u′) < ε implies u(0) = u′(0). It is well known (and not hard to 
he
k) that for every ε′ > 0there is an n > 0 so that d(T n
1 u, u) < ε′ for every u ∈ U , and in parti
ular this holds for ε′ = ε.Now for any u ∈ U we see that for v ∈ Zd we have

d(Tvu, T n
1 (Tvu)) < εso u(v) = u(v + ne1). This holds for all v ∈ Zd, so as a 
on�guration in ΣZ

d we have that
u has period n in dire
tion e1, hen
e the a
tion of T1 on it is periodi
. But this is impossiblebe
ause a transitive isometri
 a
tion is minimal and therefore, if it's in�nite, 
annot have periodi
points. �Next, we exhibit an ESS whi
h is not the suba
tion of an SFT, although by theorem 1.4 itsurely is a suba
tion of some so�
 shift. Re
all that the (topologi
al) Cha
on system is obtainedby the following pro
ess. De�ne words an ∈ {0, 1}∗ by setting a1 = 0, and given an de�ne
an+1 = anan1an, so

a2 = 0010 , a3 = 0010001010010 . . .The Cha
on system X ⊆ {0, 1}Z is the subshift su
h that a �nite word appears in X if and onlyif it appears in some an.
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ondition that a word appear as a subword of some an is de
idable. Indeed, it is easy toshow by indu
tion that for ea
h k, every an for n ≥ k is a 
on
atenation of the words ak and
ak1. Thus if b is a word whose length does not ex
eed that of ak, then b is a subword of anif and only if it is a subword of akak or of ak1ak. It follows that the set of subwords of X isre
ursive, so X is an ESS.We remark that this argument 
an be applied to show that many other 
onstru
tions insymboli
 dynami
s give ESSs; it works for any expli
it 
onstru
tion by blo
k 
on
atenation.Proposition 6.2. Let Z be an SFT su
h that the suba
tion (Z, T1) fa
tors onto the Cha
onsystem (X, T ) via π : Z → X. Then |π−1(x)| > 1 for almost every x ∈ X with respe
t to theunique invariant probability measure on X. In parti
ular, (X, T ) is not the suba
tion of an SFT.Proof. Let X0 ⊆ X be the Gδ subset of points with a unique pre-image, and let µ be the uniqueinvariant measure on X , whi
h is ergodi
. Note that X0 is invariant under T , so µ(X0) = 0 or
1. Assume that µ(X0) = 1. Let µ̃ denote the lift of µ to π−1(X0), so µ̃ is an invariant measureon Z, and it is the only one sin
e any other invariant measure would have to be supported on
Z \ π−1(X0), hen
e would proje
t under π to an invariant measure on X supported on X \X0,hen
e is di�erent from µ, a 
ontradi
tion.Ea
h of the shifts Ti maps µ̃ to a T1-invariant measure, so by uniqueness of µ̃ we see that
T2, . . . , Td a
t as automorphisms on the measure preserving system (Z, µ̃, T1). By a theorem ofdel Jun
o [dJ78℄, µ (and hen
e µ̃) has minimal self joinings, and in parti
ular has no non-trivialautomorphisms. Thus for µ̃-almost all z ∈ Z the shifts Ti a
t as powers of T1. Hen
e for a �xedtypi
al z0, we have Tiz0 = T

n(i)
1 z0 for i = 2, 3, . . . , d and some integers n(2), . . . , n(d).The group Zd is generated by T ′

1 = T1, T
′
2 = T

−n(2)
1 T2, . . . , T

′
d = T

−n(d)
1 Td, and the Zd-a
tionthey generate on X is also an SFT, so by this re-parametrization of the a
tion we may assumethat n(2) = . . . = n(d) = 0. Now the a
tion on z0 is trivial for T 2, . . . , T d. Let R > 0 be themaximum diameter of a pattern de�ning Z (with respe
t to this new parametrization). Sin
ethe alphabet is �nite we 
an �nd m < n so that z0((m + i)e1) = z0((n + i)e1) for 1 ≤ i ≤ R,and hen
e z0((m + i)e1 + u) = z0((n + i)e1 + u) for any u ∈ spanZ{e2, . . . ed}.Write k = n − m; it follows that the point z1 de�ned by z1(
∑d

i=1 siei) = z0(s
′
1e1) for

s′1 = s1 mod k belongs X , sin
e we are merely �gluing� together patterns on strips of the form
[m; n + R − 1] × Zd−1, the gluing taking pla
e along the boundary of depth R, on whi
h thepatterns agree.For the point z′ we now have that z′(u) = z′(u + ke1) for any u ∈ Zd, i.e. it is periodi
 inthe e1-dire
tion. Hen
e its image in X is as well. But the Cha
on system does not 
ontain anyperiodi
 points, being in�nite and minimal; a 
ontradi
tion. �This proof works generally for any Zk-system X with trivial 
entralizer.It remains an interesting open question whether the Cha
on system 
an o

ur as a �nite-to-one fa
tor of the suba
tion of an SFT. Another is whether a uniquely ergodi
 suba
tion of anSFT 
an be measure-theoreti
ally isomorphi
 to the Cha
on system.
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al system is a non-negative number measuring theasymptoti
 rate of growth of the number of distin
t orbits at smaller and smaller s
ales. Ade�nition for the general setting may be found in [Wal82℄. For our purposes the entropy of asubshift X ⊆ ΣZd may be de�ned by
h(X) = lim

n→∞

1

|Fn|
log #{a ∈ ΣFn : a appears in x}where Fn = {1, 2, . . . , n}d is the d-dimensional 
ube of side n. This limit 
an be shown to existand 
onverges to its limit from above, and is de
reasing along the sequen
e n = 2k, k = 1, 2, . . ..To de�ne entropy for a totally dis
onne
ted system X , let P1,P2, . . . be a re�ning se-quen
e of 
losed and open partitions of X whose union, together with all shifts of atoms bythe a
tion, separates points in X . Let Xn be the symboli
 fa
tor de�ned by Pn (that is, if

Pn = {An,1, . . . , An,k(n)}, then Xn ⊆ {1, . . . , k(n)}Z
d su
h that y ∈ Xn if and only if there issome x ∈ X with T ux ∈ An,y(u) for u ∈ Zd). Then h(X) = limh(Xn).Entropy is an isomorphism invariant. If Y → X is a fa
tor then h(Y ) ≥ h(X), and h(X×Y ) =

h(X) + h(Y ). Also if X ⊆ Y is a subsystem than h(Y ) ≥ h(X). If X1 ⊇ X2 ⊇ . . . are symboli
systems then h(Xn) ց h(∩Xn). The entropy of a non-invertible system is the entropy of thenatural extension of the original system.There is a notion of entropy h(µ) for invariant measure µ on X , and the variational prin
iplegives the relation h(X) = supµ h(µ), where µ ranges over all invariant probability measures on
X (see [Wal82℄). This is true also for non-invertible systems.Applying the above we see that if X is an SFT and f is the CA asso
iated to X in se
tion6.1, then h(X, T1) = h(Λ, f), where Λ is the limit set of f . To see this, note that ex
ept for theDira
 measure on the �xed point, there is a 1-1 
orresponden
e between f -invariant measureson Λ and T1-invariant measures on X , and 
orresponding measures are isomorphi
, so have thesame entropy. Sin
e the measure on the �xed point has entropy 0, the 
laim follows.7.2. A 
hara
terization of the entropy of EDS. In this se
tion we prove theorem 1.8:
h ≥ 0 is the entropy of an EDS if and only if it is the lim inf of a re
ursive sequen
e, orequivalently, there is a re
ursive array (m, n) 7→ hm(n) ∈ Q with hm(n) ց hm ր h. Tosee that lim inf an has this form when (an)∞n=1 is re
ursive, de�ne the re
ursive array hm(n) =

min{am, am+1, . . . , am+n}. The other dire
tion is slightly more involved, and we refer the readerto [ZW01℄.To simplify notation we give the proof for Z-systems; the multidimensional 
ase is similar.Let us �rst show ne
essity, whi
h is the easier dire
tion. Denote by Σ∗ the set of �nite wordsover Σ. Re
all that h ∈ R is right-re
ursively enumerable if there is a re
ursive sequen
e an ∈ Qwith an ց h. De�ne SL for in�nite sets L in the same way as in se
tion 1.1.Lemma 7.1. If L ⊆ Σ∗ is RE, then h(SL) is right-re
ursively enumerable



28 MICHAEL HOCHMANProof. Let a1, a2, . . . be a re
ursive sequen
e with L = {an : n ∈ N}. Let Nn,m denote thenumber of patterns a ∈ Σ2n whi
h do not 
ontain any of the words a1, a2, . . . , am. Then
hn,m = 1

2n log Nn,m is a re
ursive array, and by enumerating the pairs (m, n) and taking theminimum of hm,n for initial segments of this enumeration, we see that h = infm,n hm,n is rightre
ursively enumerable. We 
laim that h = h(SL). Clearly ≥ holds. On the other hand,
hn,k → h(S{a1,...,an}) as k → ∞ by [Fri97℄ or [HM07℄. Therefore h ≤ infn h(S{a1,...,an} = h(SL)as desired. �Returning to the general (non-expansive) 
ase, let X be an EDS. Let Pn be a re
ursivesequen
e of re�ning partitions separating points in X ; su
h a sequen
e 
learly exists. Let Xn bethe fa
tor de�ned by Pn. By proposition 3.3 and the previous lemma h(Xn) is right re
ursivelyenumerable, but an inspe
tion of the proof of the lemma shows that the re
ursive sequen
eof numbers des
ending to h(Xn) 
an be 
omputed from Pn and the e�e
tive data de�ning X(see proposition 3.3). In other words, we 
an 
ompute a re
ursive array (m, n) 7→ hm(n) with
hm(n) ց h(Xm) ր h(X). This proves one dire
tion of theorem 1.8.Before proving the opposite dire
tion, we demonstrate the te
hnique in a simpler 
ase.Lemma 7.2. Let h be a right re
ursively enumerable number; then there exists an ESS X with
h(X) = h.Proof. We may assume that 0 < h < 1, sin
e we 
an in
rease entropy by integer in
rements bytaking produ
ts with full shifts.For a word a ∈ {0, 1}ℓ, de�ne Nk(a) to be the number of distin
t subwords of length k in
a. Given a de
reasing re
ursive sequen
e of numbers 0 < h(n) < 1 with h = limh(n) > 0, wede�ne a sequen
e of numbers ℓ(n) re
ursively by

ℓ(1) = 2

ℓ(n + 1) = ℓ(n)ℓ(n)and for n ≥ 2 de�ne sets Ln ⊆ {0, 1}ℓ(n) by
Ln = {a ∈ {0, 1}ℓ(n) : Nℓ(k)(a) > ℓ(k) ·

⌈
2h(k)·ℓ(k)

⌉ for some k < n}Clearly if a 6∈ Ln and k < n then a|I 6∈ Lk for any segment I of length ℓ(k). It follows that SLnis a de
reasing family of subshifts. Set L = ∪Ln; this is 
learly an RE set. Let X = SL = ∩SLn
.We 
laim that h(X) = limh(n).Indeed, the inequality h(X) ≥ h follows from the fa
t that we 
an 
onstru
t a subshift

X0 ⊆ X with entropy h. To do this sele
t ⌈
2h(1)·ℓ(1)

⌉ blo
ks of length ℓ(1). Form all possible
on
atenations of ℓ(2)/ℓ(1) of these blo
ks; this gives a 
olle
tion of ⌈
2h(1)·ℓ(1)

⌉ℓ(2)/ℓ(1) of blo
ksof length ℓ(2), none belonging to L2. Choose a subset of size ⌈
2h(2)·ℓ(2)

⌉ of these blo
ks � thefa
t that the h(i) de
reases means that there are enough blo
ks to do this � and again form all
on
atenations of length ℓ(3)/ℓ(2) of them, arriving at a 
olle
tion of ⌈
2h(2)·ℓ(2)

⌉ℓ(3)/ℓ(2) blo
ks
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h belong to L3; et
. Taking the limit of these 
olle
tions of blo
ksgives a subshift X0 ⊆ X with entropy h.For the other dire
tion we rely on an empiri
al version of the Shannon-Ma
Millan-Breiman,theorem 2.2 of [OW90℄, whi
h states that if (ξn)∞n=1 is a typi
al sample from a �nite valuedpro
ess with entropy t, then for all ε > 0, all M su�
iently large and all N ≥ MM , one
annot 
over 1− ε of the word ξ1ξ2 . . . ξN with a 
olle
tion of less than 2M(t−ε) words of length
M ; 
hoosing a large enough n we 
an take M = ℓ(n) and N = ℓ(n + 1), and we get that
ξ1ξ2 . . . ξN ∈ Ln+1. Now suppose by way of 
ontradi
tion that h(X) > h. By the variationalprin
iple there is an invariant measure µ on X with entropy > h and the support of µ 
ontainspoints 
ontaining subwords belonging to some LN , and this is impossible, in 
ontradi
tion tothe Ornstein-Weiss result. Hen
e h(X) ≤ h. �We now turn to the proof of su�
ien
y in theorem 1.8. Suppose that (n, k) 7→ hn(k) isre
ursive, that hn(k) ց hn and that hn ր h. We may assume without loss of generality that
hn+1(k) ≥ hn(k), sin
e we 
an always repla
e hn(k) with maxm<n hm(k). As before, we mayalso assume that 0 < h < 1. We 
an further assume that 0 < hn(k) < 1. We are out to 
onstru
tan EDS X = X(h) with entropy h.We des
ribe an e�e
tively 
losed subset of ({0, 1}N)Z, whi
h we think of as the spa
e of
olorings of Z×N, by spe
ifying a sequen
e of disallowed 2-dimensional patterns of re
tangularshape. For a re
tangular pattern a ∈ {0, 1}[1;m]×[1;n] we think of it as a word of length m overthe alphabet {0, 1}n and de�ne Nk(a) as above; i.e. Nk(a) is the number of distin
t sub-patternsof a of the form a|[i,i+k]×[1;n] (for the purpose of 
ounting we identify patterns whi
h di�er onlyup to a translation).De�ne ℓ(m) as in the proof of lemma 7.2, i.e. ℓ(1) = 2 and ℓ(m + 1) = ℓ(m)ℓ(m). De�nelanguages Ln,m ⊆ ({0, 1}n)ℓ(m) by
Ln,m = {a ∈ ({0, 1}n)ℓ(m) : Nℓ(k)(a|[1;ℓ(m)]×[1;i]) > ℓ(k)·

⌈
2hi(k)·ℓ(k)

⌉ for some k < m and i ≤ n}Let L be the union of the Ln,m together with all translates of patterns from this union in the
Z-dire
tion (that is if a pattern a ∈ {0, 1}[1,m]×[1,n] is in the union then so are all translates ofit on re
tangles [i, i + m] × [1; n]). This is 
learly an RE set. Let X be the 
omplement of the
orresponding 
ylinder sets in ({0, 1}N)Z; this is an EDS.If we 
onsider the partition Pn of X a

ording to the pattern indu
ed on {0} × [1; n] thenthe resulting symboli
 system Xn has entropy hn, as 
an be seen from the lemma above. Sin
ethe sequen
e Pn is re
ursive, and together with all translates generates the topology of X , wesee that h(X) = limh(Xn) = h, as desired.8. Fa
toring SFTs onto Full ShiftsWe next prove proposition 1.10, whi
h answers question 2.10 of [BS07℄. We refer to [BS07℄for ba
kground. Our 
onstru
tion is based on the following lemma:



30 MICHAEL HOCHMANLemma 8.1. There is a uniquely ergodi
 ESS X ⊆ {0, 1}Z su
h that the frequen
y of 1's inea
h point x ∈ SL is 1/2, and su
h that for every integer r > 0 there is an n and a blo
k a oflength n appearing in X, su
h that
#{i : a(i) = 1} <

(n − 2r)3

2n3Proof. We brie�y sket
h the 
onstru
tion, whi
h is by blo
k 
on
atenation. We de�ne pairs ofwords ar, br ∈ {0, 1}k(r) re
ursively, satisfying the following properties:(1) ar, br are 
on
atenations of ar−1, br−1, and 
ontains both as subwords.(2) The frequen
y of 1's in ar is < (k(r) − 2r)3/2k(r)3 and in br is > (k(r) + 2r)3/2k(r)3,and the sum of these frequen
ies is 1/2.(3) for r ≥ 3, for every word w of length < k(r− 2), and any two subwords c′, c′′ of ar, br oflength k(r − 1), the frequen
ies of the o

urren
e of w in c′ and in c′′ di�er by at most
1/r.Here wi means the 
on
atenation of w with itself i times. We begin with k(1) = 3 and a1 = 000,

b1 = 111, and it is easy to 
he
k that given ar−1, br−1, the 
hoi
e ar = (am
r−1b

m
r−1)a

n
r−1 and

br = (br−1ar−1)
mbn

r−1 will satisfy these requirements for suitably 
hosen large integers m > n(whi
h may depend on r).A standard argument now shows that one-sided in�nite sequen
es a, b whi
h are the limits of
ar and of br, respe
tively, have the same forward orbit 
losure, whi
h is uniquely ergodi
 with
1's appearing with frequen
y 1/2. Now take the natural extension. The fa
t that this is an ESSis 
lear, and given r, the desired blo
k is ar (with n = k(r)). �Let Y ⊆ {0, 1}Z

3 be the subshift obtained by extending ea
h point on X in dire
tions e2and e3 (that is: y ∈ Y if and only if for some x ∈ X we have y(i, j, k) = x(i) for all (i, j, k).Thus (Y, T1) ∼= (X, T ). By theorem 1.4 and its proof, Y is a so�
 shift and there is an SFT Zand Z3-fa
tor map π : Z → Y so that the extension Z → Y is ATIE with respe
t to T1. Inparti
ular, h(Z) = 0 with respe
t to the Z3-a
tion.We may assume that π is a 1-blo
k 
ode, so ea
h symbol in Z 
ontains a 
omponent from Y 'salphabet and π simply forgets all other information. Starting with Z, superimpose 4 symbolsover the o

urren
e of 1's in Z (these are the 1's 
oming from Y ), with no restri
tions on
on�gurations, and 
all the resulting system W . Sin
e the density of 1's in Y is 1/2, we have
h(Ŷ ) = log 2. Write π : W → Y as well. As in [BS07℄, we observe that there is a uniqueinvariant measure µ on W with entropy log 2, and if µ =

∫
µydν(y) is the disintegration of

µ over Y then for ν-a.e. y ∈ Y , the measure µy is obtained by uniformly and independently
hoosing the symbol over ea
h 1 in y.We shall show that no fa
tor map exists from W to the full shift. Indeed, suppose f : W →

{0, 1}Z
3 were a fa
tor map given by a sliding blo
k 
ode with radius r. As in [BS07℄, for a typi
al

y ∈ Y the measure µy must map under f to the uniform Bernoulli measure on {0, 1}Z
3. Nowsin
e y is typi
al we 
an, using the properties of X , 
hoose a large 
ube Q ⊆ Z3of dimensions

n×n×n, so that the density of 1's in y|Q is < (n− 2r)3/2n3. Thus the entropy of the measure
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µy with respe
t to the partition a

ording to symbols in Q is < log 4 · (n− 2r)3/2. But be
ausethe window width of f is r, for any w ∈ W the values of w|Q 
ompletely determine the pattern
f(w)| bQ, where Q̂ is the 
ube obtained by deleting from Q every point within r of the 
omplementof Q, in the ℓ∞ metri
. But the uniform measure on {0, 1}Z

3, when restri
ted to the 
oordinates
Q̂, has entropy |Q̂| · log 2 ≥ log 4 · (n − 2r)3/2; a 
ontradi
tion. This 
ompletes the proof of the�rst part of the proposition.On the other hand, it is not hard to expli
itly 
onstru
t a non-trivial, uniquely ergodi
 subshift
X ⊆ {0, 1} with 1's appearing with density 1

2 and su
h that if we extend the one-dimensionalsubshift by adding one of four random 
olors over ea
h 1, the resulting system fa
tors onto thefull shift {0, 1}Z. Starting now from a uniquely ergodi
 zero entropy 3-dimensional SFT whosesuba
tion fa
tors onto X , the same pro
ess gives a subshift that fa
tors onto {0, 1}Z
3.To 
onstru
t su
h a system X , pi
k any uniquely ergodi
 ESS whose points are 
on
atenationsof the words a = 111000 and b = 110100 with equal frequen
ies (for example, repeat the
onstru
tion of lemma 8.1, starting with a1 = a and b1 = b). Let A ⊆ {a}×{0, 1, 2, 3}6 be thosepairs where (a, a′) ∈ A if and only if (a(i) = 0) ⇒ (a′(i) = 0), and de�ne B ⊆ {b} × {0, 1, 2, 3}6similarly. Note that |A| = |B| = 26. If Y ⊆ X ×{0, 1, 2, 3}Z is the subshift obtained by 
oloringthe 1's in X arbitrarily with 0, 1, 2, 3 and 
oloring the 0's with 0, then ea
h point in Y is the
on
atenation of words from A and B. We 
an de�ne a fa
tor map π : Y → {0, 1}Z whi
h, for

(x, x′) ∈ X×{0, 1, 2, 3}Z, �rst identi�es the intervals I so the a|I = a or b (these are determineduniquely and lo
ally), and then a
t so that π(x.x′)|I = π0(y|I), where π0 is an arbitrary fun
tionso that π0|A and π0|B are bije
tions to {0, 1}6.9. Dis
ussion and ProblemsIn this se
tion we 
olle
t some 
omments and questions regarding this work. We have seenthat the 
lass of suba
tions of SFTs are very ri
h; almost as ri
h as the 
ategory of generale�e
tive dynami
s. This re�e
ts the ri
hness of the full dynami
s. Another indi
ation of thisri
hness is Simpson's work [Sim07℄, where the 
ompli
ations are of a more re
ursive-theoreti
nature.A major 
hallenge is to understand the full dynami
s. One approa
h is to try to 
ontrol thefull dynami
s via suba
tions; this is the approa
h taken in [HM07, BS07℄. Some information
an be obtained dire
tly from the fa
t that the system is e�e
tive; theorem 4.1 of [HM07℄ is astep in this dire
tion, but this gives rather poor information.A reasonable intermediate step towards the full dynami
s might be to 
omplete the pi
tureof the Zd−1-suba
tions Zd-SFTs; these are e�e
tive but our 
onstru
tions do not work for them.Problem 9.1. Chara
terize the Zd−1 suba
tions of Zd-SFTs and so�
 shifts.Even with regard to the Zd−2-suba
tions there are some interesting questions of a topologi
alnature. It would be desirable, for example, to get extensions whi
h are smaller then ATIEs.Problem 9.2. Can every EDS be realized as a �nite-to-1 fa
tor of the suba
tion of some SFT?



32 MICHAEL HOCHMANAnother interesting question is the following:Problem 9.3. What are the expansive suba
tions whi
h 
an o

ur for SFTs, parti
ularly indimension 2?Su
h systems are 
losely related (though more 
ompli
ated than) expansive 
ellular automata,on whi
h some progress has been made in the one-dimensional 
ase [BM97, BM00, Nas08℄.One 
an also use the re
ursive-theoreti
 approa
h to di�erentiate between potentially tra
tablesystems and intra
table ones (e.g. systems with nontrivial Medvedev degree). Two important
lasses of systems at opposite ends of the dynami
al spe
trum are the strongly irredu
ible SFTsand the minimal SFTs (minimal means every orbit is dense). For X in these 
lasses the globallyadmissible patterns 
an be de
ided, i.e. the extension problem 
an be solved for them. Forstrongly irredu
ible systems this was demonstrated in [HM07℄; sin
e the proof for minimal SFTsis short we in
lude one here (We note that related results have been proved independently in[DKB06℄):Proposition 9.4. There is an algorithm whi
h, given a �nite set L of patterns de�ning anon-empty minimal SFT and a pattern b ∈ ΣF , de
ides whether b appears in SL or not.Proof. The algorithm is as follows: For ea
h n enumerate all [−n; n]d-patterns a1, . . . ak(n) whi
hdo not 
ontain patterns from L. If ai|F 6= b for all i = 1, . . . k(i), output that b does not appearin X , and halt. If, on the other hand, b o

urs in all ai's, output that b appears in SL, and halt.To see that this algorithm halts, note that if b does not appear in SL then by 
ompa
tnessthe �rst alternative will eventually hold; otherwise b appears in SL, so the se
ond alternativewill eventually o

ur, sin
e if it does not then again by 
ompa
tness there is a point in x not
ontaining b, 
ontradi
ting minimality of X . �It is important to note that we assume SL is nonempty; in general, it 
annot be de
idedwhether SL is empty or not.This re
ursive-theoreti
 property of minimal and strongly irredu
ible SFTs severely limits theappli
ability to them of the methods presented here. In fa
t, it seems that any s
heme whi
h triesto use su�
iently strong 
omputation (e.g. Turing ma
hines) to introdu
e dynami
al featuresinto SFTs must fail to produ
e SFTs in these 
lasses, sin
e su
h a s
heme would probably allowus to leave the re
ursive universe.The following basi
 problem unders
ores the 
ontrast between what we 
an 
onstru
t ingeneral and in the minimal 
ase. Re
all that the universal Zd-odometer is a minimal Zd-a
tionon the Cantor set whi
h fa
tors onto every Zd-a
tion on a �nite abelian group, and su
h fa
torsseparate points. This system is unique up to isomorphism. Using our results one 
an 
onstru
tan SFT that fa
tors onto the universal odometer but this SFT will be far from minimal; it willnot even be transitive.Problem 9.5. Is there a minimal SFT extending the universal odometer?
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ellular automata, we have 
hara
terized entropy and obtained a fairly good understand-ing of the possible dynami
s on the limit set in dimension ≥ 3, a least with regard the invariantmeasures. On
e again, topologi
ally we are far from a good understanding.Problem 9.6. Can one des
ribe the dynami
s and entropies of surje
tive or inje
tive CA?Problem 9.7. Can anything be said about the dynami
s of 1- and 2-dimensional CA on theirlimit sets, analogous to theorem 1.7? Referen
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