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1.a. Information. Countable partitions

(X,A,m) is a Lebesgue probability space

(X,A,m) is measurably isomorphic to ([0,1], Borel, Leb.)

P = {P1, P2, · · · } is a mod.0 partition of (X,A,m)

Pi ∈ A,m(Pi ∩ Pj) = 0 for i 6= j and m(∪iPi) = 1.

For a.e. x ∈ X, P (x) := Pi(x) s.t. x ∈ Pi(x)

Definition Information Function I(P )

I(P )(x) = − lnm(P (x)).
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Q = {Q1, Q2, · · · } another partition. The
conditional measure with respect to Q m

Q
x

is given, for A ∈ A, by

mQ
x (A) =

m(Q(x) ∩A)

m(Q(x))
.

Definition Conditional Information I(P |Q)

I(P |Q)(x) = − lnmQ
x (P (x)).

P ∨Q partition s.t. P ∨Q(x) = P (x) ∩Q(x):

I(P ∨Q)(x) = I(Q)(x) + I(P |Q)(x).
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I(P )(x) measures the information brought by learning in which

element of the partition P the point x is; I(P |Q)(x) the same

information if one knows already in which element of Q the

point x lies. The addition formula is consistent with this image.

Moreover (exercise):

I(P |Q)(x) = 0 a.e. ⇐⇒ P ≺ Q

(P ≺ Q means that Q refines P : no new

information)

I(P |Q) = I(P ) a.e. ⇐⇒ P ⊥ Q

(P ⊥ Q means that P and Q are independent:

previous information is irrelevant).
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1.b Conditional measures. General case

B a subσ-algebra of A. There exist condi-
tional probability measures mBx on A satisfy-
ing:

• A 7→ mBx(A) is a probability measure for
all x,

• x 7→ mBx(A) is B-measurable, and

• ∀A ∈ A, B ∈ B,
∫
Bm

B
x(A)dm = m(A ∩B).
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Moreover, this family is essentially unique.

Proof (exercise) A0 countable algebra generating A, EB1A(x)

the conditional expectations with respect to B. For a.e. x,

x 7→ EB1A(x) satisfies Kolmogorov conditions and extends from

A0 into in a probability measure on A.

Remark: ξB s.t. x
ξB∼ y ⇐⇒ mBx = mBy

defines a partition of X which is countably

separated by A measurable sets.

We call such a partition a measurable parti-

tion.
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Conversely, let ξ be a measurable partition,

define Bξ as the σ-algebra of A-measurable

sets which are unions of elements of ξ. Then,

on a set of full measure,

ξBξ = ξ,

m
ξ
x := m

Bξ
x has support ξ(x) and

for all B ∈ Bξ, m
ξ
x(B) = 0 or 1.
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Examples

1. Let ε be the partition of X into points. Bε = A,mAx = δx and
ξA = ε.

2. X = [0,1] × [0,1], any probability measure m. η partition

into vertical lines. Bη is the σ-algebra of vertical sets. mBηx is the
conditional measure carried by η(x), and ξBη = η.

3. An example of a non-measurable partition. Let η be the par-

tition into orbits of a measure preserving transformation. Then

Bη is the σ-algebra I of invariant measurable sets. Then, the

conditional measures mIx are invariant ergodic (See Omri Sarig’s

lectures: One uses the Pointwise Ergodic Theorem). In general

ξI 6= η. For example, ξI is trivial if the transformation is ergodic.
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Martingale Theorems[see Chapter 10 b.]

I. Assume ξn ≺ ξn+1 (ξn+1 refines ξn), then

Bξn ⊂ Bξn+1
. Let B∞ := σ(∪nBn).

Then, as n→∞, for a.e. x,

mξn
x → mB∞x

and

ξB∞(x) = ∩nξn(x).
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II. Assume ξn � ξn+1 (ξn refines ξn+1), then

Bξn+1
⊂ Bξn. Let B∞ := ∩nBn.

Then, as n→∞, for a.e. x,

mξn
x → mB∞x

but, in general,

ξB∞(x) 6= ∪nξn(x).

We denote ∧nξn := ξB∞.
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Example of II: Kolmogorov 0-1 law:

X = [0,1]N,m = ⊗N{1/2,1/2},

ξn(x) = {y : yp = xp for p ≥ n}.

m
ξn
x = ⊗0,1,··· ,n−1{1/2,1/2}⊗δxn⊗· · ·⊗δxn+p⊗
· · ·

As n → ∞, mξn
x → m, ∧nξn = ξ∩nBξn is trivial

but

∪nξn(x) = {y : ∃n, s.t. yp = xp for p ≥ n}.
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1.c Conditional information. General case

P a countable partition, ξ a measurable par-
tition.

Definition Conditional Information I(P |ξ)

I(P |ξ)(x) = − lnmξ
x(P (x)).

We have again (exercise):

I(P |ξ)(x) = 0 a.e. ⇐⇒ P ≺ ξ,

I(P |ξ) = I(P ) a.e. ⇐⇒ P ⊥ ξ and

I(P ∨Q|ξ)(x) = I(Q|ξ)(x) + I(P |Q ∨ ξ)(x),
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I(P ∨Q|ξ)(x) = I(Q|ξ)(x) + I(P |Q ∨ ξ)(x),

where Q∨ ξ is the measurable partition obtained by cutting each

element of ξ by the Qj such that mξ
x(Qj) > 0. Verify then that

mQ∨ξ
x (A) =

m
ξ
x(A ∩Q(x))

m
ξ
x(Q(x))

. (1)

In particular, I(P |ξ)(x) = I(Q|ξ)(x) a.e. iff

P ∨ ξ = Q ∨ ξ.
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If ξn ≺ ξn+1 and ξ∞(x) := ∩nξn(x),

or if ξn � ξn+1 and ξ∞ := ∧nξn,

I(P |ξn)→ I(P |ξ∞) a.e..

Theorem Assume ξn ≺ ξn+1 and
∫
I(P |ξ1) <

+∞. Then,∫
sup
n
I(P |ξn) < +∞.
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Proof By definition, for all t > 0:

mξ1
x ({y : sup

n
I(P |ξn)(y) > t}) =

∑
i

mξ1
x (Pi∩{y : inf

n
mξn
x (Pi) < e−t})

Claim: mξ1
x (Pi ∩ {y : infnm

ξn
x (Pi) < e−t}) ≤ min{mξ1

x (Pi), e−t}.

Using the claim and
∫ +∞

0
min{a, e−t}dt = a− a ln a, we get:∫

sup
n
I(P |ξn)dmξ1

x ≤
∑
i

mξ1
x (Pi)−

∑
i

mξ1
x (Pi) lnmξ1

x (Pi)

≤ 1 +

∫
I(P |ξ1)dmξ1

x

and the conclusion follows by integrating with respect to m.
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Proof of the claim:

mξ1
x (Pi ∩ {y : infnm

ξn
x (Pi) < e−t}) ≤ mξ1

x (Pi) is clear.

Moreover, let ν(y) be the smallest integer n such that mξn
y (Pi) <

e−t.

Since {y : ν(y) = n} ∈ Bξn, we may write:

mξ1
x (Pi ∩ {y : ν(y) = n}) =

∫
{y:ν(y)=n}

mξn
y (Pi)dm

ξ1
x (y)

≤ e−tmξ1
x ({y : ν(y) = n}).

Therefore,

mξ1
x (Pi ∩ {y : inf

n
mξn
x (Pi) < e−t}) =

∑
n

mξ1
x (Pi ∩ {y : ν(y) = n})

≤ e−t
∑
n

mξ1
x ({y : ν(y) = n}) ≤ e−t.
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2.a Entropy

Definition The entropy H(P ) of a count-

able partition P is the integral of the infor-

mation function:

H(P ) =
∫
I(P )(x)dm(x) = −

∑
i

m(Pi) lnm(Pi).

0 ≤ H(P ) ≤ +∞. H(P ) = 0 ⇐⇒ P = {X}.
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Definition ξ a measurable partition. The

conditional entropy of the partition P with

respect to ξ is given by:

H(P |ξ) =
∫
I(P |ξ)dm(x) =

∫
H
m
ξ
x
(P )dm(x).

0 ≤ H(P |ξ) ≤ +∞. H(P |ξ) = 0 ⇐⇒ P ≺ ξ.

H(P ∨Q|ξ) = H(Q|ξ) +H(P |Q ∨ ξ).
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Proposition 1) If ξ1 ≺ ξ2, H(P |ξ2) ≤ H(P |ξ1).

2) If Card (P ) = K, then H(P ) ≤ lnK, with

equality iff m(Pi) = 1/K for all i.

Proof: Both statements follow from the strict

convexity of the function t 7→ φ(t) = t ln t.

For 2), write that

−
1

K
lnK = φ(

1

K
) = φ

(
1

K

K∑
i=1

m(Pi)

)
≤

1

K

K∑
i=1

φ (m(Pi)) = −
1

K
H(P )

and we have equality only if all m(Pi) coincide.
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For 1), since ξ1 ≺ ξ2, mξ1
x (Pi) =

∫
mξ2
y (Pi)dm

ξ1
x (dy) and therefore

φ
(
mξ1
x (Pi)

)
≤
∫
φ
(
mξ2
y (Pi)

)
dmξ1

x (dy). Summing on i yields:

H
m
ξ1
x

(P ) ≥
∫

H
m
ξ2
y

(P )dmξ1
x (dy).

1) follows by integrating on x. �

We have equality in 1) iff m
ξ2
y (Pi) is con-

stant mξ1
x -a.e. (P is said to be conditionally

independent of Bξ2
relatively to Bξ1

).

In particular, H(P |ξ) ≤ H(P ) with equality iff

P is independent of Bξ.
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Proposition 1) If ξn ≺ ξn+1, ξ∞(x) :=
∩nξn(x) and H(P |ξ1) < +∞, then

H(P |ξ1)↘ H(P |ξ∞).

2) If ξn � ξn+1 and ξ∞ := ∧nξn, then

H(P |ξ1)↗ H(P |ξ∞).

Proof 1) We know that I(P |ξn) converges towards I(P |ξ∞) and

by Theorem page 15, that
∫

supn I(P |ξn) < +∞. The conver-

gence follows by the Dominated Convergence Theorem. The

limit is non-increasing by the previous Proposition.
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2) As just seen, Hmξn
x

(P ) ≤
∫
H
m
ξn+1
y

(P )dmξn
x (dy). This means that

x 7→ Hmξn
x

(P ) is a supermartingale with respect to the decreasing

family of σ-algebras Bξn. By Doob’s Theorem (see Chapter 10

b), it converges m-a.e. and in L1 if it makes sense. In particular,∫
Hmξn

x
(P )dm(x) converges towards

∫
Hmξ∞

x
(P )dm(x), even if the

limit is infinite. �

Complements 1) If H(Q|ξ) < +∞, there

exists P,H(P ) < +∞ such that Q∨ξ = P ∨ξ.
Moreover, H(P ) = O(H(Q|ξ)).
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Sketch of a proof: α) One can choose Pi such that P ∨ ξ = Q∨ ξ
and mξ

x(Pi) ≥ mξ
x(Pi+1). Then, mξ

x(Pi) ≥ 1/i and
∫
X

(∑
i
mξ
x(Pi) ln i

)
dm(x) ≤

H(P |ξ) = H(Q|ξ). Then,
∑

i
m(Pi) ln i ≤ H(Q|ξ).

β) Set, for a > 1, qi = i−a

ζ(a)
.
∑

i
qi = 1 and:

∑
i
m(Pi) ln m(Pi)

qi
=∑

i
qiφ
(
m(Pi)
qi

)
≥ φ
(∑

i
qi
m(Pi)
qi

)
= 0, i.e. H(P ) ≤ −

∑
i
m(Pi) ln qi ≤

ln ζ(a) + a
∑

i
m(Pi) ln i ≤ ln ζ(a) + aH(Q|ξ) < +∞.

γ) Use ln ζ(a) ≤ 1
a−1

and optimize at a = 1 + 1√
H(Q|ξ)

.

2) Define, for ξ, η measurable partitions

H(η|ξ) := sup
Q:QcountableQ≺η

H(Q|ξ).

Then, ∆(ξ, η) := H(η|ξ) + H(ξ|η) is a ”dis-
tance” (it might be infinite) for which the
space of measurable partitions is complete.
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2.b Mean entropy

Let T : X → X be a measurable, measure

preserving transformation, P a partition; set

T−1P for the partition into the sets

T−1Pi = {y : Ty ∈ Pi}.

Then, H(T−1P ) = H(P ). Denote

Pnm := ∨m≤j<nT−jP, P∞m := ∨m≤jT−jP.
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Then, H(Pnm) ≤ H(Pm0 )+H(Pn0 ). By Fekete’s

Lemma:

1

n
H(Pn0 )→ inf

n

1

n
H(Pn0 ) =: h(P, T ).

h(P, T ) is called the mean entropy of P . We

have:

h(P, T ) = H(P |P∞1 ).

Proof: Write H(P n
0 ) = H(T−nP ) + H(T−(n−1)P |T−nP ) + · · ·+

H(P |P n
1 ). The general term in the sum is H(P |P j

1) which con-

verges towards H(P |P∞1 ). The average has the same limit. �
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Properties of the mean entropy

h(P k0 , T ) = h(P, T ); h(P k0 , T
k) = kh(P, T ).

|h(P, T )− h(Q,T )| ≤∆(P,Q).
Proof: Write H(P n

0 ∨ Qn
0) = H(P n

0 ) + H(Qn
0|P n

0 ) = H(Qn
0) +

H(P n
0 |Qn

0). It follows that

|H(P n
0 )−H(Qn

0)| ≤ H(P n
0 |Qn

0) +H(Qn
0|P n

0 )

≤
n∑
i=1

H(T−iP |Qn
0) +H(T−iQ|P n

0 ) ≤ n∆(P,Q). �

In particular, Q ≺ P∞0 ⇒ h(Q,T ) ≤ h(P, T ).

Because there are partitions Qk ≺ P k
0 with ∆(Q,Qk)→ 0.
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Entropy of a transformation

Definition hm(T ) := supP ;Pfinite h(P, T ).

Example 1: Rotations (X = R/Z, Borel, Leb. , Tx = x +

α mod1). Then h(T ) = 0. Proof: Let Pk = {· · · , [ j
k
, j+1

k
], · · · }.

Since (Pk)n0 has less than kn elements, h(Pk, T ) = 0. On the
other hand, for any Q finite, H(Q|Pk)→ 0. �

Example 2: Bernoulli shifts (A, p) a finite or countable prob-
ability space, H(p) < +∞.

X = AN,A,m = ⊗npn, Tx = y with yn = xn+1. Then,

hm(T ) = H(p)

Proof: P defined by x0. H(P n
0 ) = nH(p) and P∞0 = A. �

Remark the formula also holds if H(p) = +∞.
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2.c Relative entropy. Pinsker formula

We assume that the transformation T is in-

vertible. For m,n ∈ Z,m < n, define Pnm, P
∞
m ,

Pn−∞, P
∞
−∞. We have:

h(P, T ) = H(P |P∞1 ) = H(P |P0
−∞) = h(P, T−1),

since all these numbers are limn
1
n
H(P n

0 ).

In particular, hm(T ) = hm(T−1).

Exercise: For k ∈ Z, hm(T k) = |k|hm(T ).
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The measurable partition ξ is called invariant

if the σ-algebra Bξ is invariant. Then:

ξ(Tx) = Tξ(x);T∗(mξ
x) = m

ξ
Tx

I(T−1P |ξ)(x) = I(P |ξ)(Tx);H(T−1P |ξ) = H(P |ξ).

The relative mean entropy is given by:

h(P, T |ξ) = lim
n

1

n
H(Pn0 |ξ) = inf

n

1

n
H(Pn0 |ξ)

= H(P |P∞1 ∨ ξ) = H(P |P0
−∞ ∨ ξ).

Proofs and properties are the same as the ones for the absolute

mean entropy.
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Proposition [Pinsker Formula]

h(P ∨Q,T |ξ) = h(Q,T |ξ) + h(P, T |ξ ∨Q∞−∞).
Proof : Write

H((P ∨Q)n0|ξ) = H(Qn
0|ξ) +H(P n

0 |ξ ∨Qn
0)

= H(Qn
0|ξ) +

∑
j

H(P |P 0
−j ∨ ξ ∨Q

n−j
−j ).

Most of the terms in the sum are closer and closer to

H(P |P 0
−∞ ∨ ξ ∨Q∞−∞) = h(P, T |ξ). �

Corollary The family of sets A ∈ A s.t.
h({A,Ac}, T ) = 0 form an invariant σ-algebra,
the Pinsker σ-algebra.
Let π be the associated measurable partition,
h(P, T |π) = h(P, T ) for all P,H(P ) <∞.

Proof: Exercise.
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Proposition P,H(P ) < +∞, P∞−∞ = ε. Then,

π = ∧n∈ZPn−∞ = ∧n∈ZP∞n .

Proof: 1) Assume A ∈ B∧nξn and denote PA := {A,Ac}. Then,

h((P∨PA), T ) = h(PA, T )+h(P, T |(PA)∞−∞) = h(P, T )+h(PA, T |P∞−∞).

h(PA, T |P∞−∞) = 0 since PA ≺ P∞−∞; h(P, T |(PA)∞−∞) = h(P, T )
since (PA)∞−∞ ≺ P 0

−∞. Therefore, h(PA, T ) = 0.

2) Conversely, assume that h(PA, T ) = 0. Then, as above,

H(P n
0 |P 0

−∞ ∨ (PA)∞−∞) = H(P n
0 |P 0

−∞) for all n > 0. Also

H(P n
0 |P 0

−∞ ∨ PA) = H(P n
0 |P 0

−∞), since PA ≺ (PA)∞−∞.

This implies: H(PA|P 0
−∞) = H(PA|P n

−∞) = H(PA|P∞−∞) = 0.

So, PA ≺ P 0
−∞. Thus, PA ≺ P n

−∞∀n ∈ Z, i.e. PA ≺ ∧nP n
−∞. �
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ξ is called increasing if ξ ≺ T−1ξ, i.e. ξ(Tx) ⊂
T (ξ(x)). Then,

h(ξ, T ) := H(T−1ξ|ξ) ≤ h(T ).

Proof: Q ≺ T−1ξ, Q finite. Then, H(Q|ξ) ≤ H(Q|Q0
−∞) =

h(Q,T ) ≤ h(T ). �

Exercise: ξ increasing. Then,

h(ξ, T ) = sup
Q finite

lim
n

1

n
H(Qn0|ξ).

Remark. One may have ξ increasing, T−nξ ↗
ε and h(ξ, T ) < h(T ). See an example on
page 64.
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3.a Shannon-McMillan-Breiman Theorem

Theorem (X,A,m, T ) ergodic, P countable
partition with H(P ) < +∞. Then,

1
nI(Pn0 )(x)

a.s.,L1

−→ h(P, T ).
Proof: Write

I(P n
0 )(x) =

n−1∑
j=0

I(T−jP |P n+1
j+1 )(x) =

n−1∑
j=0

I(P |P n−j+1
1 )(T jx).

The Theorem follows since I(P |P n−j+1
1 )(x) → I(P |P∞1 )(x) a.s.

and in L1, supn I(P |P n
1 ) ∈ L1 by Theorem page 15, and:

Claim (exercise) If fk ∈ L1, fk
a.s.,L1

−→ f∞ and supk |fk| ∈ L1, then

1

n

n−1∑
k=0

fk ◦ T k
a.s.,L1

−→
∫

f∞ as k →∞. �
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SMB Theorem, variant 1 (X,A,m, T ) er-

godic, P countable partition with H(P ) <

+∞. Then,

1

2n
I(Pn−n)(x)

a.s.,L1

−→ h(P, T ).

SMB Theorem, variant 2 (X,A,m, T ) er-

godic, ξ increasing measurable partition. Then,

1

n
I(T−nξ|ξ)(x)

a.s.,L1

−→ h(ξ, T ).
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SMB Theorem, variant 3 (X,A,m, T ) er-
godic, ξ invariant measurable partition, P

countable partition with H(P |ξ) < +∞. Then,

1

n
I(Pn0 |ξ)(x)

a.s.,L1

−→ h(P, T |ξ).

SMB Theorem, variant 4 (X,A,m, T ) non
necessarily ergodic, P countable partition with
H(P ) < +∞. Then,

1

n
I(Pn0 )(x)

a.s.,L1

−→ hmx(P, T ),

where mx is the ergodic decomposition of
m.
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Proof: Variant 1, 2 and 3 are proven by the same argument as
SMB Theorem.

For variant 4, recall from page 21 that

H
m
P0
−∞
x

(P ) ≥
∫

H
m
P0
−∞∨η
y

(P )dm
P 0
−∞
x (dy),

where η is the measurable partition associated to the σ-algebra
of invariant sets. In other words:

Im(P |P 0
−∞)(y) ≥

∫
Imη

y
(P |P 0

−∞)(z)dm
P 0
−∞
y (dz).

The proof of SMB yields, in the nonergodic case,

1

n
I(P n

0 )(x)
a.s.,L1

−→
∫

Im(P |P 0
−∞)(y)dmη

x(dy)

(recall that mη
x is the decomposition of m into ergodic compo-

nents, cf. page 9). Integrating the above inequality in y, we see
that

lim inf
n

1

n
I(P n

0 )(x) ≥
∫

Imη
y
(P |P 0

−∞)(y)dmη
x(dy) = hmη

x
(P, T ).
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lim inf
n

1

n
I(P n

0 )(x) ≥
∫

Imη
y
(P |P 0

−∞)(y)dmη
x(dy) = hmη

x
(P, T ).

The integral of the first term goes to h(P, T ). The integral of
the last term is h(P, T |η). The Theorem follows from:

Claim η the measurable partition associated to the invariant
sets. Then, h(P, T ) = h(P, T |η).

Clear for Q ≺ η, Q finite, and

h(P, T |η) = H(P |P 0
−∞ ∨ η) = inf

Q;Q≺η
H(P |P 0

−∞ ∨Q). �
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3.b Local entropy

X is a metric compact space, A the Borel σ-

algebra, T a homeomorphism of X and m a

T -invariant probability measure (which exists

by a fixed point Theorem). For ε > 0, n ∈ N,

define the Bowen dynamical ball B(x, n, ε)

as:

B(x, n, ε) := {y : d(T kx, T ky) < ε, for 0 ≤ k < n}.
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Theorem [Brin-Katok] (X,T,m) as above.
Assume m ergodic. Then,

hm(T ) = lim
ε→0

lim inf
n
−

1

n
lnm(B(x, n, ε))

= lim
ε→0

lim sup
n

−
1

n
lnm(B(x, n, ε)).

Proof: 1) If the elements of P have diameter smaller than ε,
then P n

0 (x) ⊂ B(x, n, ε) and therefore:

lim sup
n

−
1

n
lnm(B(x, n, ε)) ≤ lim sup

n
−

1

n
I(P n

0 )(x) = hm(P, T ) ≤ h(T ).

2) Let δ, ρ > 0, ρ to be chosen later. Choose Q a finite partition

in closed sets and ε > 0 such that m(Uε(∂Q)) < ρ (∂Q is the union

of the boundaries of the elements of Q, Uε its ε-neighborhood)

and h(Q,T ) ≥ h(T )− δ if h(T ) is finite, > 1/δ otherwise.
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Consider the following sets En and Fn:

En := {x : ∀p ≥ n,
1

p

n−1∑
j=0

χUe(∂Q)(T
jx) < 2ρ}

Fn := {x : ∀p ≥ n,m(Qp
0(x)) ≤ e−p(h(Q,T )−δ)}

By the Ergodic Theorem (for En) and the SMB Theorem (for
Fn), for n large enough, m(En∩Fn) ≥ 1−δ. For x ∈ En∩Fn, p ≥ n,

B(x, n, ε) is contained in less than
(
p

2ρp

)
elements of Qp

0.

Either they all have measure ≤ e−p(h(Q,T )−4δ) and then m(B(x, n, ε)) ≤

e−p(h(Q,T )−4δ)

(
p

2ρp

)
≤ e−p(h(Q,T )−5δ) by choosing ρ small enough,

n large enough that
(
p

2ρp

)
≤ epδ for all p ≥ n,

or at least one of those elements of Qp
0 has measure > e−p(h(Q,T )−4δ).

The total measure of points x ∈ En ∩ Fn belonging to those bad

B(y, n, ε) is at most
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#{bad at. of Qn
0}×#{at. of Qn

0 ∈ Fn touching each bad at.}×e−p(h(Q,T )−δ),

We have #{bad at. of Qn
0} ≤ ep(h(Q,T )−4δ) and

#{at. of Qn
0 ∈ Fn touching each bad at.} ≤

(
p

2ρp

)
≤ epδ

Altogether, the measure of points x ∈ En ∩ Fn belonging to bad
B(y, n, ε) is at most ep(h(Q,T )−4δ) × epδ × e−p(h(Q,T )−δ) ≤ e−2pδ.

By Borel Cantelli, a.e. point in En ∩ Fn eventually does not
belong to the bad set, so that

lim inf
n
−

1

n
lnm(B(x, n, ε)) ≥ h(Q,T )− 5δ on En ∩ Fn.

By our choice of Q, if h(T ) < ∞, lim infn−1
n

lnm(B(x, n, ε)) ≥

h(T )−6δ and, if h(T ) =∞, lim infn−1
n

lnm(B(x, n, ε)) ≥ 1/δ−5δ.

The conclusion follows. �
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Exercise Write variants 1, 2 and 3 of Brin-

Katok Theorem.

BK variant 4 (X,T,m) as above. Let mx :=

mIx be the ergodic decomposition of m. Then,

hmx(T ) = lim
ε→0

lim inf
n
−

1

n
lnm(B(x, n, ε))

= lim
ε→0

lim sup
n

−
1

n
lnm(B(x, n, ε)).

Proof: 1)By SMB variant 4, we get, using the same partition
P ,

lim sup
n

−
1

n
lnm(B(x, n, ε)) ≤ lim sup

n
−

1

n
I(P n

0 )(x) = hmx(P, T ) ≤ hmx(T ).
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2) Let A be a finite partition in invariant sets such that A0 =
{x : hmx(T ) ≥ 1/δ} and x 7→ hmx(T ) varies by less than δ on each
other element of A.

Set hi = inf{x∈Ai} hmx(T ) if i > 0, h0 = 1/δ.

One can find a finite partition Q in closed sets and ε > 0 such
that m(Uε(∂Q)) < ρ and H(A|Q) is so small that outside a set G
of measure δ, each element Qj of Q is contained in one element
Ai(j)∩Gc. One can also impose that for x ∈ Ai, hmx(Q,T ) ≥ hi−δ.
With such a partition Q, the proof of BK Theorem 2) gives, for
x ∈ Ai ∩Gc:

lim inf
n
−

1

n
lnm(B(x, n, ε)) ≥ hi − 6δ.

The conclusion follows. �

44



Linear automorphisms of tori

In the next three sections, X is the d-dimensional

torus Td = Rd/Zd, A the Borel σ-algebra,

T the transformation of X defined by the

quotient of a linear action on Rd of a ma-

trix A ∈ SL(d,R), m an invariant probability

measure. One particular invariant probability

measure is the Lebesgue measure λ.
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4 a. Ergodicity, mixing, entropy

Theorem (X,A, λ, T ) is ergodic and mixing

if, and only if, no eigenvalue of A is a root

of unity.

Proof: L2(Td, λ) admits an orthonormal basis em,m ∈ Zd, where
em(x) = e2iπ〈m,x〉. Clearly em(Tx) = eAtm(x). Therefore, spectral
properties of the Koopman operator T on L2(Td, λ) can be read
on the properties of the action of At on Zd.

Ate0 = e0 corresponds to the space of constant functions.

If all other orbits of the action of At on Zd are infinite, (X,A, λ, T )

is mixing (exercise).
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If (X,A, λ, T ) is non mixing, there is a finite orbit, i.e. there are
m ∈ Zd, k ∈ N such that (At)km = m. At (and therefore A) has
an eigenvalue root of unity.

Finally, if At has an eigenvalue root of unity, there are v ∈ Rd, k ∈

N such that (At)kv = v. Clearly v is rational and can be chosen

with integer coordinates. The orbit of v in Zd is then finite and

the function f(x) =
∑k

j=0
e2iπ〈(At)jv,x〉 is invariant: (X,A, λ, T ) is

not ergodic. �

Let A be a linear automorphism of Td. We
denote λ1, λ2 · · · , λK the different moduli of
the eigenvalues of A. Each λi appears with
multiplicity mi,

∑K
i=1mi = d.
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Theorem hλ(T ) =
∑K
i=1mimax{0, lnλi}.

Proof: Clearly, for all n, ε, λ(B(x, n, ε)) = λ(B(0, n, ε)). For
i = 1, · · ·K, let Vi be the sum of eigenspaces of eigenvalues
of modulus λi, and write x =

∑
xi, xi ∈ Vi. Fix ε. Then, for all

large n:

{y =
∑

i
yi : max{1, λni }|yi| ≤ εe−nε} ⊂ B(0, n, ε)

⊂ {y =
∑

i
yi : max{1, λni }|yi| ≤ εenε}.

(Use the real Jordan form of A.) Then, for all x,

| lim sup
n

−
1

n
lnλ(B(x, n, ε))−

K∑
i=1

mi max{0, lnλi}| ≤ ε.

The proposition follows by Brin-Katok Theorem (use variant 4

if (X,A, λ, T ) is not ergodic). �
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Proposition m any T -invariant mesure.

hm(T ) ≤
K∑
i=1

mimax{0, lnλi}.

Proof: May assume that m is ergodic. Set

En := {y : e−n(hm(T )+δ) ≤ m(B(y, n, ε)) ≤ e−n(hm(T )−δ)}.

Then, for n large enough, ε small, m(En) ≥ 1/2. Choose a set
An ⊂ En maximal with the property that that for y1, y2 ∈ Ak,
B(y1, n, ε/2) ∩B(y2, n, ε/2) = ∅. Clearly,

#An ≤ (min
x
λ(B(x, n, ε/2)))−1 ≤ (

2

ε
)KeKε

∏
i

(max{1, λni })mi.

But, by maximality, ∪{x∈An}B(x, n, ε) covers En and therefore

#An ≥ 1/2en(hm(T )−δ). Comparing the two estimates gives the

result. �
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4 b. Dimension on T2

In this subsection, we assume T is an ergodic
linear automorphism of T2. Then (why?),
the eigenvalues of the matrix A are λ > 1 >

λ−1. We have for any ergodic probability
measure m:

Theorem lim
ε→0

lnm(B(x, ε))

ln ε
=

2hm(T )

lnλ
.

Proof: Write BB(x, n, ε) := {y : d(T kx, T ky) < ε, for |k| < n}
Observe that for all n

BB(x, n, C−1ε) ⊂ B(x, ελ−n) ⊂ BB(x, n, Cε),

for some constant C depending on the angle between the invari-

ant directions V1, V2. Conclude using BK variant 1. �
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Hausdorff dimension

Recall the definition of the Hausdorff dimension of a subset E
of a metric space (X, d).

For a cover U = {Ui} of E and s ≥ 0, write
Hs,U :=

∑
i
(DiamUi)s and Hs(E) := infU covers EHs,U . Then,

H-dim(E) := sup{s : Hs(E) =∞} = inf{s : Hs(E) = 0}.

A measure m on a metric space X is said to be exact dimensional

if lim
ε→0

lnm(B(x, ε))

ln ε
exists and is constant m-a.e. and the limit

constant is called the dimension of m.

Verify that, if m is exact dimensional of dimension δ, then:

δ = inf{H-dim(E), E Borel and m(E) = 1}.
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Let X = [0,1]p× [0,1]q with the max metric, π the projection on

the first coordinate and m =
∫ (

mη
s(dt)

)
[π∗m](ds) as in Example

2 page 9.

Lemma Assume π∗m is exact dimensional of dimension δ and
that for [π∗m]-a.e.s,mη

s is exact dimensional of dimension γ.
Then,

lim inf
ε→0

lnm(B(x, ε))

ln ε
≥ δ + γ.

Typically, the inequality is strict. For example, let {(s,Bs)} ⊂

[0,∞) × R] be the graph of the Brownian process B and m the

measure which projects on Lebesgue on the s coordinate. it

is known that m has dimension 3/2, but the projection has di-

mension 1 and the conditional measures δBs have dimension 0.

In that case, it is true that by considering the other order of

projections, one gets indeed 3/2 = 1 + 1/2.
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Proof: Fix ε > 0. Choose A1 and N1 s.t. m(A1) > 1− ε and, for
(s, t) ∈ A1, n ≥ N1,

ms(B
q(t,2e−n)) ≤ e−nγenε.

Then, by Lebesgue Density Theorem, choose A2 and N2 ≥ N1

s.t. m(A2) > 1− ε and, for (s, t) ∈ A2, n ≥ N2,

m(A1 ∩B((s, t), e−n)) ≥
1

2
m(B((s, t), e−n)).

We get for (s, t) ∈ A2 and n ≥ N2,

m(B((s, t), e−n)) ≤ 2

∫
Bp(s,e−n)

ms(A1 ∩Bq(t, e−n))[π∗m](dt)

≤ 2e−nγenε[π∗m](Bp(s, e−n)). �

Lemma (variant) Let X = Ω× [0,1]q, π the projection on the

first coordinate and m =
∫ (

mω(dt)
)

[π∗m](dω). Assume that for
π∗m-a.e. ω, mω is exact dimensional of dimension γ. Then, at
m-a.e. (ω, t):

lim inf
ε→0

lnm(Bq((ω, t), ε))

ln ε
≥ γ.

53



5. Entropy, exponents and dimension for
linear hyperbolic automorphisms

A linear automorphism of a torus is called
hyperbolic if the matrix A has no eigenvalue
of modulus 1. We have:

Theorem Let T be a hyperbolic linear auto-
mophism of the torus, m an invariant ergodic
probability measure.
Then, m is exact dimensional: there is δ s.t.

lim
ε→0

lnm(B(x, ε))

ln ε
= δ for m a.e.x.
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Proof If there are different moduli, then dynamical Bowen ball
are no more directly comparable to usual metric ball. The proof
will go by analyzing one exponent at a time.

We write λ1, · · · , λu for the moduli of eigenvalues which are > 1,
λs, · · · , λK for the others. We regroup Wi = ⊕j≤iVj for i ≤ u,
Wi = ⊕j≥iVj for i ≥ s.

In general, the partition Wi of Td obtained by projecting the
affine planes parallel to Wi in Rd is not a measurable partition.
A measurable partition ξi is said to be subordinated to Wi if for
m-a.e. x, ξ(x) is an open neighborhood of x inside Wi(x). We
will show that, if the measurable partition ξi is subordinated to
Wi, then the conditional measures mξi

x are exact dimensional.

More precisely there are numbers δi, hi, i = 1, · · · ,K, such that,
if ξi is a measurable partition subordinated to Wi, then:
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More precisely there are numbers δi, hi, i = 1, · · · ,K, such that,
if ξi is a measurable partition subordinated to Wi, then:

lim
ε→0

lnmξi
x (B(x, ε))

ln ε
= δi, and lim

n
−

1

n
lnmξi

x (BB(x, n, ε0)) = hi (2)

for some small ε0 and that moreover,

hu = hs = h. (3)

We will show that (2) for u and s and (3) imply that the measure
m is exact dimensional, with dimension δu + δs. We will then
prove (2) by induction on i ≤ u. The proof is the same for i ≥ s.

Let us first show (3): we have hu ≤ h (page 33). To see
that hu = h, choose P be a partition in small cubes, small
enough that P 0

−∞(x) ⊂ BWu(x)(x, ε0), P+∞
0 (x) ⊂ BWs(x)(x, ε0) so

that P+∞
−∞ (x) = {x} and thus h(P, T ) = h(T ). If ξ is a decreasing

partition adapted to Wu with ξ ≺ P∞0 (see below LS Lemma
page 59), then

hu ≥ lim
n

1

n
H(P n

0 |T−1ξ) = H(P |P∞1 ∨ T−1ξ) = H(TP |P∞1 ) = h.
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(2) and (3) imply m is exact dimensional and δ = δu + δs.

1) Locally,Wu andWs form a system of coordinates, and the max
distance is equivalent to the original distance on Td. Let π be the
projection on some Ws space along Wu. Then m =

∫
mud[π∗m]

and π∗m is an average of measures ms. By Lemma page 51,

lim infε→0
ln[π∗m](BWs(t,ε))

ln ε
≥ δs π∗m-a.e. and by Lemma page 50,

lim infε→0
lnm(B(x,ε))

ln ε
≥ δu + δs m-a.e..

2) Conversely, to estimate lim supε→0
lnm(B(x,ε))

ln ε
from above, we

want to estimate from below m(B(x,4e−n)). Let P be a partition
as above, small enough that P 0

−∞(x) ⊂ BWu(x)(x, ε0), P+∞
0 (x) ⊂

BWs(x)(x, ε0) so that P+∞
−∞ (x) = {x} and h(P, T ) = h(T ). Choose

a large enough that the diameter of the atoms of P an
−an is smaller

than e−n, say a = 2 max{(lnλu)−1, | lnλs|−1}. Using (2) and (3),
we have, on a set A1 of large measure, for n ≥ N1 large enough:

ms
x(P

0
−na(x)),mu

x(P na
0 (x)) ≤ e−na(h−2ε), m(P na

−na(x)) ≥ e−2na(h+2ε).
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Using (2) and Lebesgue Density Theorem, choose A2 ⊂ A1 of
large measure and N2 such that for x ∈ A2, n ≥ N2:

mu
x(A1 ∩BWu(x, e−n)) ≥ e−n(δu+ε).

Analogously, choose A3 ⊂ A2 of large measure and N3 such that
for x ∈ A3, n ≥ N3:

ms
x(A2 ∩BWs(x, e−n)) ≥ e−n(δs+ε).

All the above construction ensures that if x ∈ A3, B(x,4e−n)
contains at least e−n(δu+δs+2ε−2ah+2aε) atoms of P na

−na with measure

at least e−2na(h+2ε). This shows the claim.

Proof of (2) We prove by induction on i,1 ≤ i ≤ u (and
similarly on j = K − i,0 ≤ j ≤ K − s) that there are numbers
γi, i = 1, · · · ,K,0 ≤ γi ≤ mi such that

for i ≤ u, δi =
∑

j≤i γi, hi =
∑

j≤i γi lnλi,

for i ≥ s, δi =
∑

j≥i γi, hi =
∑

j≥i γi lnλi.
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Lemma [L.-Strelcyn] There exist, for 1 ≤ i ≤ u, increasing
measurable partitions ξi such that ξi is subordinated to Wi and
ξi ≺ ξi−1 (Set ξ0 = ε).

We admit LS Lemma, which will be proven later.

Step 1: mξ1
x are exact dimensional, with dimension δ1 = γ1 and

the entropy h1 = h(ξ1, T ) = γ1 lnλ1.
We have, as above,

{y1 : λn1|y1| ≤ εe−nε} ⊂ B(0, n, ε) ∩W1(0) ⊂ {y1 : λn1|y1| ≤ εenε}.

By BK variant 2, we know that h(ξ1, T ) = limn−1
n

lnmξ1
x (B(x, n, ε0)) =:

h1. It follows that, for a.e. x, all ε > 0:

lim sup
r→0

lnmξi
x (B(x, r))

ln r
− ε ≤ h1/ lnλ1 ≤ lim inf

r→0

lnmξi
x (B(x, r))

ln r
+ ε.

Step 1 follows.
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We assume that mξi−1
x are exact dimensional, with dimension δi−1.

We know that hi−1 = h(ξi−1, T ) = limn−1
n

lnmξi−1
x (B(x, n, ε0)),

hi = h(ξi, T ) = limn−1
n

lnmξi
x (B(x, n, ε0)). We need to show that

lim
r→0

lnmξi
x (B(x, r))

ln r
= δi−1 +

hi − hi−1

lnλi
.

Step 2: lim sup
r→0

lnmξi
x (B(x, r))

ln r
≤ δi−1 +

hi − hi−1

lnλi
.

We want to estimate from below mξi
x (B(x, λ−ni ε)). The set B(x, λ−ni ε)

is made of B(., n, ε) balls of measure at least e−n(hi+ε). In order to

count them, intersect with a typical Wi−1 leaf. The intersections

have mξi−1
x -measure less than e−n(hi−1−ε) and should fill up at least

e−n lnλi(δi−1+ε). Their number is at least e−n(lnλiδi−1−hi−1+(lnλi+1)ε).

The estimate from below of the measure of balls follow. The

precise argument uses Lebesgue Density Theorem in a way sim-

ilar to the argument on pages 57/58.
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Step 3. Approximating I(T−1ξi−1|ξi−1)

The estimate in Step 2 is a priori way off since there might be
different good B(n, ε) balls to count for different typical Wi−1

leaves. Each atom of ξi is an open set in a plane parallel to Wi

and ξi−1 partitions it into open sets of planes parallel to Wi−1.
We call πi the projection on the Vi direction parallel to Wi−1 and

BTi(x, δ) = {y; y ∈ ξi, dVi(πi(x), πi(y)) < δ}.
Set:

gδ(x) =
1

mξi
x (BTi(x, δ))

∫
BTi(x,δ)

mξi
z ([T−1ξi−1](z))dmξi

x (z)

and g∗ = inf
δ>0

gδ.

Lemma As δ → 0, γδ(x) → I(T−1ξi−1|ξi−1)(x) at m-a.e. x and∫
− ln g∗ <∞.

The convergence follows from Lebesgue Density Theorem ap-

plied to the measures (πi)∗m
ξi
x . See Theorem page 95.
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Step 4: Transversal dimension

We show that the measures µix := (πi)∗m
ξi
x are exact dimensional

with dimension γi =
hi − hi−1

lnλi
. Assume first that there is no

Jordan block in Vi and write a(k, x) := BTi(x, λ−ki ). We have:

mξi
x (a(n, x)) =

n−1∏
k=0

mξi
fkx

(a(n− k, fkx))

mξi
fk+1x

(a(n− k − 1, fk+1x))
.

By composition of conditional measures and invariance, we can
write:

mξi
fk+1x

(a(n− k − 1, fk+1x)) =
mξi
fkx

(f−1[a(n− k − 1, fk+1x)])

mξi
fkx

([f−1ξi](fkx))

and, by the contraction along Vi:
ξi(f

kx) ∩ f−1[a(n− k − 1, fk+1x)] = [f−1ξi](f
kx) ∩ a(n− k, fkx)]

It follows that

mξi
x (a(n, x)) =

n−1∏
k=0

mξi
fkx

(a(n− k, fkx))mξi
fkx

([f−1ξi](fkx))

mξi
fkx

([f−1ξi](fkx) ∩ a(n− k, fkx))
=

n−1∏
k=0

mξi
fkx

([f−1ξi](fkx))

g
λ−(n−k)
i

(fkx)
,
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so that

−
1

n lnλi
ln(mξi

x (a(n, x))) =
1

n lnλi

n−1∑
k=0

(
ln g

λ−(n−k)
i

(fkx)+I(T−1ξi|ξi)(fkx)
)
.

The first average converges to −hi−1/ lnλi by step 3 and Claim
page 34, the second to hi/ lnλi by the Birkhoff Ergodic Theorem.

In the case of Jordan blocks, define a±(k, x) := BTi(x, ck,±) in

such a way that λ−k(1+ε)
i ≤ ck,− ≤ ck,+ ≤ λ−k(1−ε)

i ,

ξi(f
kx) ∩ f−1[a−(n− k − 1, fk+1x)] ⊂ [f−1ξi](f

kx) ∩ a−(n− k, fkx)
and [f−1ξi](f

kx) ∩ a+(n− k, fkx) ⊂ ξi(f
kx) ∩ f−1[a+(n− k − 1, fk+1x)].

The conclusion follows in the same way, up to ε, for all ε.

Step 5 lim inf
r→0

lnmξi
x (B(x, r))

ln r
≥ δi−1 +

hi − hi−1

lnλi
.

Follows now from Step 4 and the dimension Lemma page 50.

This finishes the proof of exact dimension, provided we construct

the partitions ξi with the properties of LS Lemma.
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LS Lemma There exist, for 1 ≤ i ≤ u, increasing measurable
partitions ξi such that ξi is subordinated to Wi and ξi ≺ ξi−1.

We choose on each axis of coordinates in Td a ε0 dense set of
points aj,1, · · · , aj,L such that |aj,k+1 − aj,k| < ε0/2 and satisfying
another condition seen later. We consider the partition P of
Td defined by the hyperplanes Hj,k := {x : xj = aj,k} and, for
i = 1, · · · , u, ηi the partition obtained by partitioning each ele-
ment of P by planes parallel to Vi. Set η0 = ε. Then, ηi is a
measurable partition for all i and ηi ≺ ηi−1. Set ξi = ∨n≥0T nηi.
We have to show that we can choose the aj,k in such a way that
ξi(x) is a neighborhood of x in Wi(x) for m-a.e. x. The other
properties are straightforward. Let 0 < λ < λu and assume that∑

j,k,n
m(U(Hj,k, λ

−n)) <∞. Then, for m-a.e. x,

C(x) := inf
n≥0

λndWi(T−nx,∪j,kHj,k) > 0.

Clearly, BWi(x,C(x)) ⊂ ξi(x). Therefore, we only have to choose

the aj,k such that
∑

n
mj([aj,k−λ−n, aj,k +λ−n]) <∞, where mj is

the projection of m on the j coordinate. Lebesgue almost every

point on the interval [0,1] has this property (exercise; use the

last statement of Lebesgue Density Theorem page 94).
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6. Ergodic linear automorphisms

In general, an ergodic linear automorphisms

is not hyperbolic: there are eigenvalues of

modulus one (but not roots of unity).

Let Vu+1 be the corresponding eigenspace,

Wu+1 the foliation of Td into planes paral-

lel to Vu+1. Some results (and proofs) of

Section 4a and 5 apply:

for any invariant measure, the entropy is at

most
∑K
i=1mimax{0, lnλi};
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the Lebesgue measure has maximal entropy;
the conditional measures on Wi, i 6= u + 1
of an ergodic measure are exact dimensional
and, if ξi is a measurable partition subordi-
nated toWi, then: hi = limn−1

n lnmξi
x (BB(x, n, ε0)).

Lemma hu = hs = hm(T ).
Proof: Consider the partition P of the proof of LS Lemma, and
set ξu+1 = P 0

−∞. We have hm(T ) = H(P |P 0
−∞) = H(T−1ξu+1|ξu+1)

The arguments of step 4 above, applied to the projection on Vu+1
with the sets a(k, x) := BTu+1(x, e−kε) yield:

h− hu
ε

≤ esssupm−a.e. x lim sup
n

lnµu+1
x (a(n, x))

nε
≤ mu+1.

The last inequality holds since µu+1
x lives on a mu+1 dimensional

plane. �

Corollary If m is ergodic, the Pinsker partition π is trivial.
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7. Linear endomorphisms of tori

Consider in this section a d × d matrix A

with integer coefficients and T the associ-

ated transformation on Td.
For x ∈ Td, #{T−1x} = | Det A|.

The Lebesgue measure λ is T invariant (ex-

ercise) and, with the same notations,

hλ(T ) =
K∑
i=1

mimax{0, lnλi}

(same proof, cf. page 48).
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For any invariant measure m,

hm(T ) ≤
K∑
i=1

mimax{0, lnλi}.

(same proof, cf. page 49).

In particular, if d = 1, A is given by a 1 × 1
matrix (p) and Tx = px(mod.1). hλ(Tp) =
ln p and for any invariant measure m, hm(Tp) ≤
ln p. An ergodic invariant measure m is exact
dimensional and

lim
ε→0

lnm(B(x, ε))

ln ε
=
hm(Tp)

ln p
.

Proof: B(x, n, ε) = [x− pnε, x+ pnε]. �
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Folding entropy Let m be an invariant measure. The quantity
Fm(T ) = H(ε|T−1ε) is called the folding entropy of the transfor-
mation. We have:

Fm(T ) ≤ ln | Det A| and Fλ(T ) = ln | Det A|.

Observe that hλ(T ) = Fλ(T ) −
∑K

i=1
mi min{0, lnλi}. One also

has

Theorem [Shu] Let T be a hyperbolic endomorphism of Td,
m an ergodic invariant measure. Then m is exact dimensional.
More precisely, there are numbers γi, i = 1 · · · ,K such that, for
m-a.e. x,

lim
ε→0

lnm(B(x, ε))

ln ε
=
∑
i

γi, Fm(T ) =

K∑
i=1

γi lnλi

and hm(T ) =
∑K

i=1
γi max{0, lnλi} = Fm(T )−

∑K

i=1
γi min{0, lnλi}.
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8. General C1+α diffeomorphism of a

compact manifold. Pesin theory

From now on, X is a compact Riemannian

manifold, without boundary, A the Borel σ-

algebra, T a C1-diffeomorphism of X, m an

invariant probability measure.

Oseledets Multiplicative Ergodic Theorem ap-

plies to the differential DT . It is remarkable

that, as soon as the differential is Hölder

continuous, much of the linear theory of sec-

tions 4 to 7 carries over to the non-linear

case.
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Theorem [Oseledets MET] Let (X,α,m, T )
be a smooth dynamical system with m er-
godic. Then, there exist numbers

λ1 > · · · > λK

and, at m-a.e. every x, a splitting TxM =
⊕Kj=1Vi(x) such that:

1. v ∈ TxM belongs to Vi(x) if, and only if,

lim
n→±∞

1

n
ln ‖DxTnv‖Tnx = lnλi,

2. lim
n→±∞

1

n
ln |sin∠(Vi(T

nx), Vj(T
nx))| = 0 for

i 6= j.
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To deduce our MET from the general MET for cocycles, choose

an arbitrary measurable trivialization of the tangent bundle Φ :

X × Rd → TX and apply MET to the cocycle based on A1(x) =

Φ−1
Tx◦DxT ◦Φx. Observe also that the subbundles Vi are automati-

cally measurable and invariant: DxTVi(x) = Vi(Tx). In particular,

the dimension of Vi is an invariant function and therefore an a.e.

constant mi.

Theorem [Margulis-Ruelle inequality] As-
sume m ergodic, then

hm(T ) ≤
K∑
i=1

mimax{0, lnλi}.

Exercise Write the non-ergodic variant of MET and of Ruelle-

Margulis inequality.
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Sketch of the proof of MR inequality:

1.For a linear mapping A of Rd, denote t1 ≥ t2 ≥ · · · ≥ td the
eigenvalues of (AtA)1/2 and observe that U

(
A(B(0, r), r)

)
can

be covered by less than C
∏d

i=1
max(1, ti) balls of radius r/2.

2. Fix n > 0 and choose r small enough that on each ball B(x, r),
T n is well approximated by expT nx ◦DxT n ◦ exp−1

x .

3. Choose a finite partition Pr such that elements of Pr have
inner diameter r/2 and outer diameter r.

4. Using 1,2, and 3, show that

I(T−nPr|Pr)(x) ≤
d∑

i=1

ln max(1, ti(DxT
n)) + C.

5. Conclude.
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We now assume that the diffeomorphism T

is C1+α.

( i.e. There are local charts Φ such that, on

each domain where it is defined, x 7→ Φ−1 ◦
DxT ◦ Φ and x 7→ Φ−1 ◦ Dx(T−1) ◦ Φ are α-

Hölder continuous functions with values in

GL(d,R).

Recall that a function f on a metric space

is α-Hölder if Lipα := supx6=y
|f(x)−f(y)|

(d(x,y))α is

finite.)
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Let, as in the linear case, u, s be such that

λi > 0⇔ i ≤ u; λi < 0⇔ i ≥ s.

Define the following equivalence relations:

for i ≥ s, y
Wi∼ x⇔ lim supn→∞

1
n ln d(Tnx, Tny) ≤ lnλi

for i ≤ u, y
Wi∼ x⇔ lim infn→−∞ 1

n ln d(Tnx, Tny) ≥ lnλi

In the linear case, equivalence classes are

planes parallel to the corresponding Wi. Set

for i ≤ u, Wi(x) = ⊕j≤iVj(x)and for i ≥ s,

Wi(x) = ⊕j≥iVj(x).
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Theorem [Pesin] Let (X,A, T,m) be a smooth
dynamical system with T of class C1+α and
m ergodic. Then, for each i ≤ u or i ≥ s,
the equivalence classes of Wi form a measur-
able lamination of m-almost all X. Individual
classes Wi(x) are homeomorphic to Rdi and
depend measurably on x. There is a mea-
surable invariant set Λ,m(Λ) = 1, such that
for x ∈ Λ, TxWi(x) = Wi(x).

Moreover, for fixed small ε, there is a mea-
surable function ` : Λ → (0,+∞), satisfying
`(T±1x) ≤ eε`(x) with the following proper-
ties:
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– The connected component Wi,loc(x) of x

inside Wi(x)∩B(x, (`(x))−1) is the exponen-

tial of a graph of a function ϕi,x : Wi(x) →
Rd 	Wi(x),

– ϕi,x is C1+α, D0ϕi,x = 0 and Lipα(Dϕi,x) ≤
`(x),

– there is a metric δi,x on Wi,loc(x) and a

constant C such that, for y, z ∈Wi,loc(x) :

Cd(y, z) ≤ δi,x(y, z) ≤ `(x)d(y, z),
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– for i ≥ s, TWi,loc(x) ⊂ Wi,loc(Tx) and, for

y, z ∈Wi,loc(x) :

δi,Tx(Ty, Tz) ≤ λieεδi,x(y, z),

– for i ≤ u, T−1Wi,loc(x) ⊂ Wi,loc(T
−1x) and,

for y, z ∈Wi,loc(x) :

δi,T−1x(T−1y, T−1z) ≤ λ−1
i eεδi,x(y, z).
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In short, the nonlinear picture is the same
as the linear picture, at least on a small ball
around almost every point. How small de-
pends on the point, but is slowly varying
along the orbit. In particular, for i ≤ u,

W0(x) := {x} ⊂ W1(x) ⊂ W2(x) ⊂ · · · ⊂ Wu(x)

and each Wi−1 family defines a foliation of
Wi(x). Let πi,x : Wi,loc → expxϕi,xVi(x) be
the projection along Wi−1,loc leaves (com-
pare with page 61). Then:

Lemma[Barreira-Pesin-Schmeling] The map-
ping πi,x is Lipschitz and the Lipschitz con-
stant depends only on `(x).

79



Given Pesin Theorem and BPS Lemma, we
can do all the geometrical arguments of Sec-
tion 5. For the dynamical arguments, we can
compare the orbits of x and y only as long
as d(T ix, T jy) ≤ `−1(T jx).

Lemma [Mañé] Let (X,A,m, T ) be a smooth
ergodic dynamical system, f : x→ (0,+∞) a
function satisfying f(Tx) ≤ Af(x) for some
A. Then, there exist a partition P with finite
entropy such that for m-a.e. x, for n large
enough,

y ∈ P+∞
0 (x) =⇒ d(Tny, Tnx) ≤ f(Tnx).
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Proof Choose δ0 > 0 such that the set B := {x : f(x) ≥ δ0} has
positive measure and consider for n > 0:

Bn := {x, x ∈ B, T jx 6∈ B for 1 ≤ j < n, T nx ∈ B}.

Then
∑

n
nm(Bn) = 1 (Kac Lemma). Let L be the Lipschitz

constant of T . Since X is a Riemannian compact manifold, there
is a number D such that for each N , one can find a partition PN
of X into less than DN sets of diameter smaller than (AL)−Nδ0.
Let Q be the partition Q = (B0 = Bc, B1, · · · ) and P the partition
obtained by cutting each Bn by Pn. We have:

H(Q) < ∞ since, by the argument page 24 with qn = e−n

1−e−1 ,

H(Q) ≤ − ln(1− e−1) +
∑

n
nm(Bn) <∞.

H(P ) ≤ H(Q) +H(P |Q) ≤ H(Q) +
∑

n
m(Bn) lnDn <∞, and

P has the desired property.
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Let indeed k be the first time the orbit of x enters B. As soon as

n ≥ k, there is a last integer kn ≤ n with the property that T knx ∈

B. Then, T knx ∈ Bp, for some p,0 ≤ n − kn < p. If y ∈ P∞0 (x),

T kny ∈ P (T knx) so that T kny ∈ Bp and d(T knx, T kny) ≤ (AL)−pδ0

By the Lipschitz property, d(T nx, T ny) ≤ Ln−kn(AL)−pδ0 ≤ A−pδ0,

whereas f(T nx) ≥ Akn−nf(T knx) ≥ A−pδ0. �

Exercise Let (X,A,m, T ) be a smooth er-
godic dynamical system, f : x → (0,+∞) a
function satisfying f(Tx) ≤ Af(x) for some
A. Write and prove the variant of Brin-Katok
Theorem page 40 involving

B(x, n, εf) := {y : d(T jx, T jy) < εf(T jx) for 0 ≤ j ≤ n}.
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Theorem [Barreira-Pesin-Schmeling] Let
(X,A,m, T ) be a C1+α ergodic dynamical
system. Assume that 0 is not an exponent
of the system (s = u+ 1). Then, m is exact
dimensional.
The proof follows the arguments of the linear case. Observe
though that one needs a new argument to show that, for m-
a.e.x,

lim inf
ε→0

lnm(B(x, ε))

ln ε
≥ δu + δs.

Contrarily to 1) page 57, it is not true any more that Wu and
Ws form a system of coordinates where the max distance is
equivalent to the original distance on X.

Observe that the arguments for 2) page 57/58 are valid in the

nonlinear case. With a little care, they can also englobe the

Wu+1 direction in the presence of 0 exponents and yield:
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Theorem [L-Young] Let (X,A,m, T ) be
a C1+α ergodic dynamical system. Assume
that the exponent 0 has multiplicity mu+1.
Then:

lim sup
ε→0

lnm(B(x, ε))

ln ε
≤ δu + δs +mu+1.

Actually, there are numbers γi,0 ≤ mi, which can be seen as
transverse dimensions within Wi leaves, such that

for i ≤ u, δi =
∑

j≤i γi, hi =
∑

j≤i γi lnλi,

for i ≥ s, δi =
∑

j≥i γi, hi =
∑

j≥i γi lnλi.

In particular, if m is absolutely continuous, then

δu + δs +mu+1 =
∑
j 6=u+1

γj +mu+1 = d =
∑
j

mj.

It follows that if m is absolutely continuous, γj = mj for all

j 6= u+ 1 and therefore:

84



Theorem [Pesin Formula] Let (X,A,m, T )

be a C1+α ergodic dynamical system, with

m absolutely continuous with respect to the

volume on X. Then:

hm(T ) =
K∑
i=1

mimax{0, lnλi}.
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9. Entropy and absolutely continuous

conditional measures

(X,A, T ) an ergodic linear automorphism of

the torus, m an invariant ergodic measure,

λi,mi, hi as above for 1 ≤ i ≤ u.

Theorem hi ≤
∑i
j=1mj lnλj with equality iff

m is the Lebesgue measure.
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Proof: Consider the increasing LS partition ξi such that hi =
H(T−1ξi|ξi). We first show that the conditional measures mξi

x

are proportional to the Lebesgue measure on Wi(x). Let Li(x)
be the DimWi-Lebesgue measure of ξi(x). By definition, the

DimWi-Lebesgue measure of [T−1ξi](x) is given by Li(Tx)
DetA|Wi

=

Li(Tx)∏i

j=1
λ
mi
i

. We have, at m-a.e. x:

Lemma H
m
ξi
x
(T−1ξi) ≤

∑i

j=1
mj lnλj+

∫
(lnLi(y)−lnLi(Ty))[mξi

x ](dy),

with equality iff mξI
x ([T−1ξi](x)) = Leb.[T−1ξi](x)

Leb.[ξi](x)
.

Follows from convexity of φ(t) = t ln t (see page 24:
∑

i
qiφ
(
m(Pi)
qi

)
≥

φ
(∑

i
qi
m(Pi)
qi

)
= 0 with m = mξi

x and qi = Li(Tx)

Li(x)
∏i

j=1
λ
mi
i

.)
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Observe that in the previous Lemma,
∫

(lnLi(y)−lnLi(Ty))[mξi
x ](dy)

makes sense (and might be +∞) because lnLi(y) is constant on
ξi(x) and − lnLi(Ty) is bounded from below. Me may integrate
in m and get:

H(T−1ξ|ξ) ≤
i∑

j=1

mj lnλj +

∫
(Li(y)− Li(Ty))m(dy).

In particular inf{0, Li−Li◦T} is integrable. The following Lemma
is an exercise of application of Birkhoff PET:

Lemma: Let L be a measurable function such that inf{0, L−

L ◦ T} is integrable. Then,
∫
L− L ◦ T = 0.
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It follows from the two Lemmas that hi ≤
∑i

j=1
mj lnλj and

that in the case of equality, mξI
x ([T−1ξi](x)) = Leb.[T−1ξi](x)

Leb.[ξi](x)
. By

the same argument, we also have

mξI
x ([T−nξi](x)) =

Leb.[T−nξi](x)

Leb.[ξi](x)
.

The claim follows since ∪nBT−nξ generate the σ-algebra A.

Since the automorphism is ergodic, the leafWi(0) = Wi is dense.
Let τ be an element of Wi such that τn is dense. Since the con-
ditional measures of m along Wi are proportional to Lebesgue,
the measure m is invariant by Rτx := x + τ(mod.1). By exam-
ining for instance its Fourier coefficients, one sees that the only
Rτ invariant measure is the Lebesgue measure. �
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For a C1+α diffeomorphism, part of the claim
is still true, but this does not in general suf-
fice to characterize the invariant measure:

Theorem Let T be a C1+α diffeomorphism
of a compact manifold X, m an ergodic in-
variant measure. Then,

hi ≤
i∑

j=1

mj lnλj

with equality iff the conditional measures of
m along Wi are absolutely continuous with
respect to the DimWi-dimensional Lebesgue
measure.
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In particular,

Corollary Let T be a C2 diffeomorphism

of a compact manifold X, m an ergodic in-

variant measure. Then,

h ≤
K∑
j=1

mj max{0, lnλj}

with equality iff the conditional measures of

m along Wu are absolutely continuous with

respect to the DimWu-dimensional Lebesgue

measure.
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Corollary follows from Theorem in the case i = u once we prove
hu = h. In order to use in the nonlinear case the same arguments
as the ones page 66, one needs to show that the analog of
the projection over Vu+1 is Lipschitz, so that the ‘transversal
dimension’ makes sense and is finite. This is done in [LY] with
the hypothesis that the diffeomorphism is C2. It is very likely that
the statement holds in the C1+α case as well (see in particular
[BW]), but this statement has not been formally written to this
day.
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10. Notes and comments

10 a. Density theorems on Rn We used several forms of
Lebesgue Density Theorem in these notes. Here we recall the
logic of these results. They all follow from

Theorem [Besicovich Covering Lemma] Let E ⊂ Rn, r : E →
(0,∞) a bounded function on E. Then, there is a c(n), depend-
ing only on n, such that the cover {B(x, r(x)), x ∈ E} admits a
subcover C such that no x in Rn is covered by more than c(n)
balls from C.

Let now µ be a probability measure on Rn, and g ∈ L1(µ), g ≥ 0.
Define:

gδ(x) :=
1

µ(B(x, δ))

∫
B(x,δ)

gdµ, g∗ := sup
δ
gδ and g∗ := inf

δ
gδ.

Lemma [Maximal Lemma] a) For λ > 0, µ(g∗ > λ) ≤ c(n)
λ

∫
gdµ,

and b)
∫
g∗<λ

gdµ ≤ c(n)λ.

Proof Use Besicovich Covering Theorem.
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The Maximal Lemma is used in proving:

Theorem[Lebesgue Density Theorem] Let g ∈ L1(µ). Then,

gδ → g µ-a.e. as δ → 0.

In particular, for A ∈ B, µ(A) > 0,
µ(A ∩B(x, δ))

µ(B(x, δ))
→ 1 µ-a.e. on

A as δ → 0 and lim sup
δ

µ(B(x, δ))

λ(B(x, δ))
<∞ λ-a.e..

We also used BCL on page 61: let (X,µ) be a Lebesgue space,
π : X → Rn measurable and {µt, t ∈ Rn} an associated family of
conditional probabilities. Let P be a countable partition of X
with H(P ) < ∞. Define gi(x) = µπ(x)(Pi), giδ and gi∗ defined on
Rn as above. Set:

g(x) :=
∑
i

ξPi(x)gi(x), gδ(x) :=
∑
i

ξPi(x)giδ(x)

and g∗(x) :=
∑
i

ξPi(x)gi∗(x).
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Theorem [cf. Lemma page 61] limδ→0 gd = g µ-a.e. and∫
− ln g∗ <∞.

Proof Convergence follows from LDT applied to each giδ. For
the estimate, we write (compare with pages 16/17):∫
− ln g∗dµ =

∫ ∞

0

µ(g∗ < e−s)ds =
∑
i

∫ ∞

0

µ(Pi ∩ {gi∗ < e−s})ds.

We clearly have µ(Pi ∩ {gi∗ < e−s}) ≤ µ(Pi) and, by the Maximal
Lemma b),

µ(Pi ∩ {gi∗ < e−s}) =

∫
{gi∗<e−s}

gid(π∗µ) ≤ c(n)e−s.

It follows that∫
− ln g∗dµ ≤

∑
i

∫ ∞

0

min(µ(Pi), c(n)e−s)ds

≤ H(P ) + ln c(n) + 1 <∞. �
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10 b. Martingale theorems Let {Fn}n∈Z be an increasing fam-
ily of σ-algebras in a probability space (Ω,A), F−∞ := ∩nFn,F∞
the σ-algebra generated by ∪nFn. We assume for convenience
that there are families of conditional measures µnω associated
with Fn. A process {xn}n, where xn is a Fn-measurable inte-
grable function, is called a supermartingale if it satisfies, for all
m < n and for a.e. ω:

xm(ω) ≥
∫

xn(ω′)µmω (dω′).

A martingale is a process {xn}n such that {xn}n and {−xn}n are

supermartingales. L1-bounded supermartingales converge a.e.

as n→ +∞. Supermartingales always converge as n→ −∞ (this

is sometimes called reversed martingale convergence). Namely:
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Theorem [[D], Theorem II.3.13] Let {xn,Fn}n, n ∈ Z be a su-
permartingale such that supn≥0 |xn| is integrable. Then {xn}n
converges a.e. as n→ +∞.

Theorem [[D], Theorem II.3.17] Let {xn,Fn}n, n ∈ Z be a su-
permartingale. Then

1.
∫
x0 ≤

∫
x−1 ≤ · · · ≤

∫
x−n ≤ · · · . Let L := limn→∞

∫
x−n,

2. limn→∞ x−n(ω) =: x−∞(ω) exists in (−∞,+∞] for a.e. ω
and

3. if L < +∞, then x−∞ < ∞ a.e., supn≤0 |xn| is integrable,
and the convergence in 2) holds in L1.
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10 c. Other comments

A more detailed account of most of the same material is to
come in the Volume 2 of the book by Einsiedler, Lindenstrauss
and Ward ([ELW]).

Here, information and entropy theory (Chapters 1,2 and 3) are
taken from [Ro2] and [Pa]. See also [KH] pages 161 to 179
and [W]. The entropy was introduced by Shannon [Sha] as a
measure of transmission of information. Kolmogorov [K] defined
the mean entropy as a new invariant for dynamical systems. The
properties of page 27 (Sinai [Si]) allow to compute the entropy
of many transformations. BK Theorem, with all variants, comes
from [BK]. For Lebesgue spaces and conditional measures, see
[Ro1].

Relations between dimension exponents and entropy hold in
many different contexts. Even for diffeomorphisms, they are
known for much larger families than linear automorphisms, but
the presentation is simpler in this context. We state (without
proofs) some of the relevant general results in section 8. The
proofs are extensions of the proofs we present in the linear case.
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The theorem page 50 is due to Young in the general case; the
one page 54 to Barreira, Pesin and Schmeling ([BPS], see page
83). The proof presented here follows [LY]. Since the key argu-
ment (step 4, pages 62/63) is very succinct in [LY], it is slightly
developed here. LS Lemma comes from [LS].

Invariant measures for non-hyperbolic linear automorphisms of
the torus have been studied by Lindenstrauss and Schmidt [LiS].
Their result is surprising: if m is an ergodic measure which is not
Lebesgue, then the global leaves parallel to Wu+1 form a mea-
surable partition and the corresponding conditional measures are
made of Dirac measures and uniform measures on circles.

Folding entropy was introduced by Ruelle [Ru2] in connection
with non-equilibrium statistical mechanics. The theorem page
69 (in the general C2 case) comes from [Shu]. See [QXZ], [Liu]
and [Shu] for background, motivations and history.
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Margulis-Ruelle inequality comes from [Ru1]. Details of the
proof page 73 are in [L], pages 30–32. Pesin Stable Manifold
Theorem comes from [P1], BPS Lemma from [BPS], Appendix,
Mañé’ Lemma from [M]. Pesin formula page 85 is due to Pesin
([P2]). Mañé has a simpler approach relying on the analysis
of B(x, n, ε, (`(x))−1). Here Pesin’s formula is obtained as a
corollary of the dimension formulas, an artificial feature of our
presentation.

Berg [B] showed that the Lebesgue measure is the only mea-
sure of maximal entropy for linear ergodic endomorphisms of the
torus. This is one example of a characterization of some partic-
ular invariant measure by a variational principle. Here we show
a slightly stronger result, that h1 = m1 lnλ1 already characterize
Lebesgue measure. See [EL] for more relations between partial
entropies in the linear case.

The considerations of Chapter 10a are classical and often useful

in problems of analysis. See Doob [D] for Chapter 10b.
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