The Brin-Katok "local" entropy formula

Given a transformation $T: X \rightarrow X$ let

$$
d^{n}(x, y)=\max _{0 \leq i \leq n-1} d\left(T^{i} x, T^{i} y\right)
$$

and

$$
B^{n}(x, \varepsilon)=\left\{y \in X: d^{n}(x, y)<\varepsilon\right\}
$$

As usual write

$$
\alpha^{n}=\bigvee_{i=0}^{n-1} T^{-i} \alpha
$$

Theorem 1 (Brin-Katok). Let (X, T) be a topological dynamical system with metric d, and μ an ergodic T-invariant measure with entropy h. Then

$$
\lim _{\varepsilon \searrow 0}\left(\limsup _{n \rightarrow \infty} \frac{-\log \mu\left(B^{n}(x, \varepsilon)\right)}{n}\right)=\lim _{\varepsilon \searrow 0}\left(\liminf _{n \rightarrow \infty} \frac{-\log \mu\left(B^{n}(x, \varepsilon)\right)}{n}\right)=h
$$

Fix $\varepsilon>0$. For a partition α with atoms of diameter $<\varepsilon$ we have $\alpha^{n}(x) \subseteq$ $B^{n}(x, \varepsilon)$, hence for μ-a.e. x,

$$
\limsup _{n \rightarrow \infty} \frac{-\log \mu\left(B^{n}(x, \varepsilon)\right)}{n} \leq \limsup _{n \rightarrow \infty} \frac{-\log \mu\left(\alpha^{n}(x)\right)}{n}=h_{\mu}(T, \alpha) \leq h_{\mu}(T)
$$

Letting $\varepsilon \rightarrow 0$ we obtain

$$
\lim _{\varepsilon \rightarrow 0}\left(\limsup _{n \rightarrow \infty} \frac{-\log \mu\left(B^{n}(x, \varepsilon)\right)}{n}\right) \leq h_{\mu}(T)
$$

For the other direction, fix $\rho>0$; it suffices to show that

$$
\mu\left(x: \lim _{\varepsilon \rightarrow 0}\left(\liminf _{n \rightarrow \infty} \frac{-\log B^{n}(x, \varepsilon)}{n}\right)<h_{\mu}(T)-\rho\right)=0
$$

Let $\alpha=\left\{A_{1}, \ldots, A_{k}\right\}$ be a partition with $\mu\left(\partial A_{i}\right)=0$ and

$$
h_{\mu}(\alpha, T)>h_{\mu}(T)-\rho / 4
$$

Fix ε for the moment and set

$$
E_{\varepsilon}=\bigcup_{A \in \alpha}(\partial A)^{(\varepsilon)}
$$

and note that $\mu\left(E_{\varepsilon}\right) \rightarrow 0$ as $\varepsilon \rightarrow 0$. We suppress the dependence ε from now on.

Let

$$
I_{n}(x)=\left\{0 \leq i \leq n-1: T^{i} x \notin E_{\varepsilon}\right\}
$$

and

$$
\gamma_{n}(x)=\bigcap_{i \in I_{n}} T^{-i} \alpha(x)
$$

Lemma 2. $B^{n}(x, \varepsilon) \subseteq \gamma_{n}(x)$
Proof. If $y \in B^{n}(x, \varepsilon)$ and $T^{i} x \notin E_{\delta}$ for $1 \leq i \leq n-1$, then $d\left(T^{i} y, T^{i} x\right)<\varepsilon$ and $d\left(x, \partial\left(T^{-i} \alpha(x)\right)\right) \geq \varepsilon$, so $T^{i} y \in T^{-i} \alpha(x)$, which implies $y \in \gamma_{n}(x)$.

Thus is suffices for us to show that for μ-a.e. x,

$$
\lim _{\varepsilon \rightarrow \infty}\left(\liminf _{n \rightarrow \infty} \frac{-\log \gamma_{n}(x)}{n}\right) \geq h_{\mu}(T)-\rho
$$

Let

$$
\beta=\left\{A_{1} \cap E_{\varepsilon}, \ldots, A_{k} \cap E_{\varepsilon}, X \backslash E_{\varepsilon}\right\}
$$

Note that $h_{\mu}(T, \beta) \leq \sum_{B \in \beta}-\mu(B) \log \mu(B)$, and since the number of atoms of β is fixed but one of them is $X \backslash E_{\varepsilon}$ and $\mu\left(X \backslash E_{\varepsilon}\right) \rightarrow 1$ as $\varepsilon \rightarrow 0$, we have $h_{\mu}(T, \beta) \rightarrow 0$ as $\varepsilon \rightarrow 0$.

Now, note that

$$
\gamma_{n}(x) \cap \beta^{n}(x) \subseteq \alpha^{n}(x)
$$

Suppose for a moment that $\left\{\gamma_{n}(x)\right\}_{x \in X}$ is a partition (which it is not!). We then could argue as follows: Let

$$
\begin{aligned}
\mathcal{U}_{n} & =\left\{\alpha^{n}(x): \mu\left(\alpha^{n}(x)\right)<2^{\left.-h_{\mu}(T, \alpha)-\rho / 4\right)}\right\} \\
\mathcal{V}_{n} & =\left\{\beta^{n}(x): \mu\left(\beta^{n}(x)\right)>2^{-n\left(h_{\mu}(T, \beta)+\rho / 4\right)}\right\} \\
\mathcal{W}_{n} & =\left\{\gamma_{n}(x): \mu\left(\gamma^{n}(x)\right)>2^{-n\left(h_{\mu}(T)-\rho\right)}\right\} \\
\mathcal{Z}_{n} & =\left\{\gamma_{n}(x) \cap \beta^{n}(x): \alpha^{n}(x) \in \mathcal{U}_{n}, B^{n}(x) \in \mathcal{V}_{n} \text { and } \gamma^{n}(x) \in \mathcal{W}_{n}\right\}
\end{aligned}
$$

Note that μ-a.e. x has $\alpha^{n}(x) \in \mathcal{U}_{n}$ and $\beta^{n}(x) \in \mathcal{V}_{n}$ for all large enough n, so it is enough to show that μ-typically, $\gamma_{n}(x) \cap \beta^{n}(x) \in \mathcal{Z}_{n}$ for only finitely many n. To see this note that $\left|\mathcal{W}_{n}\right| \leq 2^{n\left(h_{\mu}(T)-\rho\right)}$ and $\left|\mathcal{V}_{n}\right| \leq 2^{n\left(h_{\mu}(\beta)+\rho / 4\right)}$, and if $D \in \mathcal{Z}_{n}$ then $\mu(D)<2^{-n\left(h_{\mu}(T)-\rho / 4\right)}$, so

$$
\mu\left(\cup \mathcal{Z}_{n}\right) \leq 2^{n\left(h_{\mu}(T)-\rho\right)} \cdot 2^{n\left(h_{\mu}(T, \beta)+\rho / 4\right)} \cdot 2^{-n\left(h_{\mu}(T, \alpha)-\rho / 4\right)}<2^{-n\left(\rho / 4-h_{\mu}(\beta)\right)}
$$

Since $h_{\mu}(T, \beta)<\rho / 4$ for all small enough ε, for such ε the probabilities above are summable, and the claim follows by Borel-Cantelli.

Since $\left\{\gamma_{n}(x)\right\}_{x \in X}$ isn't a partition, this argument fails, spcifically, the conclusion $\left|\mathcal{W}_{n}\right| \leq 2^{n\left(h_{\mu}(T)-\rho\right)}$ does not follow from $\mu(C) \geq 2^{-n\left(h_{\mu}(T)-\rho\right)}$ for $C \in \mathcal{W}_{n}$. To get around, this define

$$
\Gamma_{n}=\left\{\gamma_{n}(x): x \in X \text { and }\left|I_{n}(x)\right|>n\left(1-2 \mu\left(E_{\varepsilon}\right)\right)\right\}
$$

By the ergodic theorem applied to $1_{E_{\varepsilon}}$, for μ-a.e. x,

$$
\gamma_{n}(x) \in \Gamma_{n} \quad \text { for all large enough } n
$$

Lemma 3. If A_{1}, \ldots, A_{N} are sets in a probability measure space $(\Omega, \mathcal{F}, \mathbb{P})$, and if $\mathbb{P}\left(A_{i}\right)>c$ and each $\omega \in \Omega$ belongs to at most k of the sets, then $N \leq k / c$.

Proof. By assumption $\sum_{i=1}^{N} 1_{A_{i}} \leq k$ so

$$
k \geq \int \sum_{i=1}^{N} 1_{A_{i}} d \mathbb{P}=\sum_{i=1}^{N} \mu\left(A_{i}\right)>N c
$$

Since those elements of Γ_{n} containing x are intersections of at least $n(1-$ $\left.2 \mu\left(E_{\varepsilon}\right)\right)$ of the sets $T^{-i} \alpha(x), 0 \leq i<n$, it follows that

Each x belongs to at most $\binom{n}{\left(1-2 \mu\left(E_{\varepsilon}\right)\right) n}=\binom{n}{2 \mu\left(E_{\varepsilon}\right) n} \leq 2^{n H\left(2 \mu\left(E_{\varepsilon}\right)\right)}$ elements of Γ_{n}
Now define

$$
\mathcal{W}_{n}=\left\{C \in \Gamma_{n}: \mu(C)>2^{-n\left(h_{\mu}(T)-\rho\right)}\right\}
$$

so by the lemma,

$$
\left|\mathcal{W}_{n}\right| \leq 2^{n\left(h_{\mu}(\alpha)-\rho\right)} \cdot 2^{n H\left(2 \mu\left(E_{\varepsilon}\right)\right)}
$$

With this definition of \mathcal{W}_{n}, and since $H\left(2 \mu\left(E_{\varepsilon}\right)\right) \rightarrow 0$ as $\varepsilon \rightarrow 0$, the previous argument goes through unchanged.

