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Preface

These are notes from an introductory course on ergodic theory given at the He-
brew University of Jerusalem in the spring semester of 2017. The goal is to cover
the foundations of ergodic theory � recurrence, ergodicity, ergodic theorems, er-
godic decompositions, some topological dynamics, weak mixing vx. pure point
spectrum, entropy as an isomorphism invariant, Shannon-McMillan-Breiman
theorem, K-systems and the Pinsker factor. In addition we will hopefully cover
some other subjects, among them possibly the Rohlin lemma, disjointness, and
return times theorems.
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Chapter 1

Introduction

At its most basic level, dynamical systems theory is about understanding the
long-term behavior of a map T : X → X under iteration.

X is called the phase space and the points x ∈ X may be imagined to
represent the possible states of the �system�.

The map T determines how the system evolves with time: time is discrete,
and from state x it transitions to state Tx in one unit of time.

Thus if at time 0 the system is in state x, then the state at all future times
t = 1, 2, 3, . . . are determined: at time t = 1 it will be in state Tx, at time t = 2
in state T (Tx) = T 2x, and so on; in general we de�ne

Tnx = T ◦ T ◦ . . . ◦ T︸ ︷︷ ︸
n

(x)

so Tnx is the state of the system at time n, assuming that at time zero it is in
state x.

The �future� trajectory of an initial point x is called the (forward) orbit,
denoted

OT (x) = {x, Tx, T 2x, . . .}

When T is invertible, y = T−1x satis�es Ty = x, so it represents the state of
the world at time t = −1, and we write T−n = (T−1)n = (Tn)−1. The one can
also consider the full- or two-sided orbit

O±T (x) = {Tnx : n ∈ Z}

There are many questions one can ask. Does a point x ∈ X necessarily
return close to itself at some future time, and how often this happens? If we
�x another set A, how often does x visit A? If we cannot answer this for all
points, we would like to know the answer at least for typical points. What is the
behavior of pairs of points x, y ∈ X: do they come close to each other? given
another pair x′, y′, is there some future time when x is close to x′ and y is close
to y′? If f : X → R, how well does the value of f at time 0 predict its value at
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CHAPTER 1. INTRODUCTION 5

future times? How does randomness arise from deterministic evolution of time?
And so on.

In the set-theoretic framework above is too general to say anything except
trivialities, but things become more interesting when more structure is given to
X and T . The most common asumptions are that X is a topological space, and
T continuous (this is called topological dynamics); X is a compact manifold and
T a once- or many-times di�erentiable map (this is called smooth dynamics);
or that there is a measure on X and T may preserve it (this is called ergodic
theory). We will come give precise de�nitions shortly.

One might ask why these assumptions are natural ones to make. First, in
many important examples, all these structures are present. In particular, a the-
orem of Liouville from celestial mechanics states that for Hamiltonian systems,
e.g. systems governed by Newton's laws, all these assumptions are satis�ed.
Another example comes from the algebraic settings, e.g. automorphisms of
compact abelian groups, or �ows on homogeneous spaces. On theother hand,
in some situations only some of these structures is available. An example is can
be found in the applications of ergodic theory to combinatorics, where there is
no smooth structure in sight. Thus the study of these assumptions individually
is motivated by more than mathematical curiosity.

In these notes we focus primarily on ergodic theory, which is in a sense
the most general of these theories. It is also the one with the most analytical
�avor, and a surprisingly rich theory emerges from fairly modest axioms. The
purpose of this course is to develop some of these fundamental results. We will
also touch upon some applications and connections with dynamics on compact
metric spaces.



Chapter 2

Measure preserving systems

2.1 Measure preserving systems

De�nition 2.1.1. A measure preserving system (m.p.s.) is a quadruple
X = (X,B, µ, T ) where (X,B, µ) is a probability space, and T : X → X is a
measurable, measure-preserving map: that is

T−1A ∈ B and µ(T−1A) = µ(A) for all A ∈ B

If T is invertible and T−1 is measurable then it satis�es the same conditions,
and the system is called invertible.

Example 2.1.2. Let X be a �nite set with the σ-algebra of all subsets and
normalized counting measure µ, and T : X → X a bijection. This is a measure
preserving system, since measurability is not a question, and

µ(T−1A) =
1

|X|
|T−1A| = 1

|X|
|A| = µ(A)

This example is very trivial but many of the phenomena we will encounter can
already be observed (and usually are easy to prove) for �nite systems. It is
worth keeping this example in mind.

Example 2.1.3. The identity map on any measure space is measure preserving.

Example 2.1.4 (Circle rotation). Let X = S1 = {x ∈ C : |x| = 1} be the
unit circle with the Borel sets B and normalized length measure µ (the image
of Lebesgue measure on [0, 1] unter t 7→ (cos 2πt, sin 2πt)). Let α ∈ R and let
Rα : S1 → S1 denote the rotation by angle α, that is, z 7→ e2πiαz (if α /∈ 2πZ
then this map is not the identity). Then Rα preserves µ, since it transforms
intervals to intervals of equal length. More precisely, consider the algebra A of
half-open intervals with endpoints in Q[α]. Then T preserves A and preserves
the restriction of the measure to it, hence it preserves the extension of the
measure to the σ-algebra generated by A, which is the measure µ on B.
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CHAPTER 2. MEASURE PRESERVING SYSTEMS 7

This example is sometimes described as X = R/Z, then the map is written
additively, x 7→ x+ α.

Here is a generalization: let G be a compact group with normalized Haar
measure µ, �x g ∈ G, and consider Rg : G → G given by x → gx. To see
that µ(T−1A) = µ(A), let ν(A) = µ(g−1A), and note that ν is a Borel prob-
ability measure that is right invariant: for any h ∈ H, ν(Bh) = µ(g−1Bh) =
µ(g−1B) = ν(B). This ν = µ.

Example 2.1.5 (Doubling map). Let X = [0, 1] with the Borel sets and
Lebesgue measure, and let Tx = 2x mod 1. This map is onto is not 1-1, in
fact every point has two pre-images which di�er by 1

2 , except for 1, which
is not in the image. To see that T2 preserves µ, note that for any interval
I = [a, a+ r) ⊆ [0, 1),

T−1
2 [a, a+ r) = [

a

2
,
a+ r

2
) ∪ [

a

2
+

1

2
,
a+ r

2
+

1

2
)

which is the union of two intervals of length half the length; the total length is
unchanged.

Note: TI is generally of larger length than I. the property of measure
preservation is de�ned by µ(T−1A) = µ(A).

If we identify [0, 1) with R/Z then the example above coincides with the
endomorphism x 7→ 2x of the compact group R/Z. Equivalently, if we identify
[0, 1] it with S1 ⊆ C, then the map is z 7→ z2.

This example generalizes easily to Tax = ax mod 1 for any 1 < a ∈ N.
For non-integer a > 1 Lebesgue measure is not preserved. More generally one
can consider a compact group G with Haar measure µ and an endomorphism
T : G→ G. Then from uniqueness of Haar measure one again can show that T
preserves µ.

Example 2.1.6. (Symbolic spaces and product measures) Let A be a �nite set,
|A| ≥ 2, which we think of as a discrete topological space. Let X+ = AN and
X = AZ with the product σ-algebras. In both cases there is a map which shifts
�to the right�,

(σx)n = xn+1

In the case of X this is an invertible map (the inverse is (σx)n = xn−1). In the
one-sided caseX+, the shift is not 1-1 since for every sequence x = x1x2 . . . ∈ AN

we have σ−1(x) = {x0x1x2 . . . : x0 ∈ A}.
Let p be a probability measure on A and µ = pZ, µ+ = pN the product

measures on X,X+, respectively. By considering the algebra of cylinder sets
[a] = {x : xi = ai}, where a is a �nite sequence of symbols, one may verify that
σ preserves the measure.

Example 2.1.7. (Stationary processes) In probability theory, a sequence {ξn}∞n=1

of random variables is called stationary if the distribution of a consecutive n-
tuple (ξk, . . . , ξk+n−1) does not depend on where it begins; i.e. (ξ1, . . . , ξn) =
(ξk, . . . , ξk+n−1) in distribution for every k and n. Intuitively, this means that
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if we observe a �nite sample from the process, the values that we see give no
information about when the sample was taken.

From a probabilistic point of view it rarely matters what the sample space is
and one may as well choose it to be (X,B) = (Y N, CN), where (Y, C) is the range
of the variables. On this space there is again de�ned the shift map σ : X → X
given by σ((yn)∞n=1) = (yn+1)∞n=1. For any A1, . . . , An ∈ C and k let

Ak = Y × . . .× Y︸ ︷︷ ︸
k

×A1 × . . .×An × Y × Y × Y × . . .

Note that B is generated by the family of such sets. If P is the underlying
probability measure, then stationarity means that for any A1, . . . , An and k,

P (A0) = P (Ak)

Since Ak = σ−kA0 this shows that the family of sets B such that P (σ−1B) =
P (B) contains all the sets of the form above. Since this family is a σ-algebra
and the sets above generate B, we see that σ preserves P .

There is a converse to this: suppose that P is a σ-invariant measure on
X = Y N. De�ne ξn(y) = yn. Then (ξn) is a stationary process.

Example 2.1.8. (Hamiltonian systems) The notion of a measure-preserving
system emerged from the following class of examples. Let Ω = R2n; we denote
ω ∈ Ω by ω = (p, q) where p, q ∈ Rn. Classically, p describes the positions of
particles and q their momenta. Let H : Ω→ R be a smooth map and consider
the di�erential equation

d

dt
pi = −∂H

∂qi
d

dt
q̇i =

∂H

∂pi

Under suitable assumptions, for every initial state ω = (p0, q0) ∈ Ω and t ∈ R
there is determines a unique solution γω(t) = (p(t), q(t)), and ωt = γω(t) is the
state of the world after evolving for a period of t started from ω.

Thinking of t as �xed, we have de�ned a map Tt : Ω → Ω by Ttω = γω(t).
Clearly

T0(ω) = γω(0) = ω

We claim that this is an action of R. Indeed, notice that σ(s) = γω(t + s)
satis�es σ(0) = γω(t) = ωt and σ̇(s) = ˙γωt(t + s), and so A(σ, σ̇) = A(γω(t +
s), γ̇ω(t+ s)) = 0. Thus by uniqueness of the solution, γωt(s) = γω(t+ s). This
translates to

Tt+s(ω) = γω(t+ s) = γωt(s) = Tsωt = Ts(Ttω)

and of course also Tt+s = Ts+t = TtTsω. Thus (Tt)t∈R is action of R on Ω.
It often happens that Ω contains compact subsets which are invariant under

the action. For example there may be a notion of energy E : Ω → R that
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is preserved, i.e. E(Ttω) = E(ω), and then the level sets M = E−1(e0) are
invariant under the action. E is nice enough, M will be a smooth and often
compact manifold. Furthermore, by a remarkable theorem of Liouville, if the
equation governing the evolution is a Hamiltonian equation (as is the case in
classical mechanics) then the �ow preserves volume, i.e. vol(TtU) = vol(U) for
every t and open (or Borel) set U . The same is true for the volume form on M .

2.2 Recurrence

A deep and basic properties of measure preserving systems is that they display
�recurrence�, meaning, roughly, that for typical x, anything that happens along
its orbit happens in�nitely often. This phenomenon was �rst discovered by
Poincaré and bears his name.

Given a set A and x ∈ A it will be convenient to say that x returns to A if
Tnx ∈ A for some n > 0; this is the same as x ∈ A ∩ T−nA. We say that x
returns for A in�nitely often if there are in�nitely many such n.

The following proposition is, essentially, the pigeon-hole principle.

Proposition 2.2.1. Let A be a measurable set, µ(A) > 0. Then there is an n
such that µ(A ∩ T−nA) > 0.

Proof. Consider the sets A, T−1A, T−2A, . . . , T−kA. Since T is measure pre-
serving, all the sets T−iA have measure µ(A), so for k > 1/µ(A) they cannot

be pairwise disjoint mod µ (if they were then 1 ≥ µ(X) ≥
∑k
i=1 µ(T−iA) > 1,

which is impossible). Therefore there are indices 0 ≤ i < j ≤ k such that
µ(T−iA ∩ T−jA) > 0. Now,

T−iA ∩ T−jA = T−i(A ∩ T−(j−i)A)

so µ(A ∩ T−(j−i)A) > 0, as desired.

Theorem 2.2.2 (Poincare recurrence theorem). If µ(A) > 0 then µ-a.e. x ∈ A
returns to A.

Proof. Let

E = {x ∈ A : Tnx /∈ A for n > 0} = A \
∞⋃
n=1

T−nA

Thus E ⊆ A and T−nE ∩E ⊆ T−nE ∩A = ∅ for n ≥ 1 by de�nition. Therefore
by the previous proposition, µ(E) = 0.

Corollary 2.2.3. If µ(A) > 0 then µ-a.e. x ∈ A returns to A in�nitely often.

Proof. Let E be as in the previous proof. For any k-tuple n1 < n2 < . . . < nk,
the set of points x ∈ A which return to A only at times n1, . . . , nk satisfy
Tnkx ∈ E. Therefore,

{x ∈ A : x returns to A �nitely often} =
⋃
k

⋃
n1<...<nk

T−nkE



CHAPTER 2. MEASURE PRESERVING SYSTEMS 10

Hence the set on the left is the countable union of set of measure 0.

In order to discuss of recurrence for individual points we suppose now that
X is a metric space.

De�nition 2.2.4. Let X be a metric space and T : X → X. Then x ∈ X is
called forward recurrent if there is a sequence nk →∞ such that Tnkx→ x.

Proposition 2.2.5. Let (X,B, µ, T ) by a measure-preserving system where X
is a separable metric space and the open sets are measurable. Thenµ-a.e. x is
forward recurrent.

Proof. Let Ai = Bri(xi) be a countable sequence of balls that generate the
topology. By Theorem 2.2.2, there are sets A′i ⊆ Ai of full measure such that
every x ∈ A′i returns to Ai. Let X0 = X \

⋃
(Ai \A′i), which is of full µ-measure.

For x ∈ X0 if x ∈ Ai then x returns to Ai, so it returns to within |diamAn| of
itself. Since x belongs to An of arbitrarily small diameter, x is recurrent.

When the phenomenon of recurrence was discovered it created quite a stir.
Indeed, by Liouville's theorem it applies to Hamiltonian systems, such as plan-
etary systems and the motion of molecules in a gas. In these settings, Poincaré
recurrence seems to imply that the system is stable in the strong sense that it
nearly returns to the same con�guration in�nitely often. This question arose
original in the context of stability of the solar system in a weaker sense, i.e.,
will it persist inde�nitely or will the planets eventually collide with the sun,
or �y o� into deep space. Stability in the strong sense above contradicts our
experience. One thing to note, however, is the time frame for this recurrence
is enormous, and in the celestial-mechanical or thermodynamics context it does
not say anything about the short-term stability of the systems.

Recurrence also implies that there are no quantities that only increase as time
moves forwards; this is on the face of it in contradiction of the second law of
thermodynamics, which asserts that the thermodynamic entropy of a mechanical
system increases monotonely over time. We say that a function f : X → R
is increasing (respectively, constant) along orbits if f(Tx) ≥ f(x) a.e.
(respectively f(Tx) = f(x) a.e.). This is the same as requiring that for a.e. x
the sequence f(x), f(Tx), f(T 2x), . . . is non-decreasing (respectively constant).
Although super�cially stronger, the latter condition follows because for �xed n,

µ(x : f(Tn+1(x)) < f(Tnx)) = µ(T−n{x : f(Tx) < f(x)})
= µ(x : f(Tx) < f(x))

= 0

and so the intersection of these events is still of measure zero. The same argu-
ment works for functions constant along orbits.

Corollary 2.2.6. In a measure preserving system any measurable function that
is increasing along orbits is a.s. constant along orbits.
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Proof. Let f be increasing along orbits. For every real number s let

Es = {x : f(x) < s < f(Tx)}

Almost every x satis�es f(Tx) ≥ f(x). If x has this property, then f(Tx) >
f(x) if and only if x ∈ Es for some s ∈ Q. Thus, it is enough to show that
µ(
⋃
s∈QEs) = 0, and for this it is enough to show µ(Es) = 0 for every s. Now

note that outside a set of measure zero we have, by the non-increasing property,
f(Tnx) ≥ f(Tx) for all n ≥ 1; thus if x ∈ Es then Tnx /∈ Es for all n ≥ 1, and
by Poincare recurrence, µ(Es) = 0.

The last result highlights the importance of measurability. In the purely
set-theoretic context, one can always choose a representative x from each orbit,
and using it de�ne f(Tnx) = n for n ≥ 0 (and also n < 0 if T is invertible).
Then we have a function which is strictly increasing along orbits; but by the
corollary, it cannot be measurable.

2.3 The Koopman operator

To every measure preserving system one can associate an isometry (or at least,
nor-preserving self-map) of L2, which captures a lot of information about the
dynamics and is amenable to the tools of functional analysis. This is called the
Koopman operator.

Let us �rst make some general oservationw. A function T : X → Y between
sets induces a map T̂ sending a function with domain Y to a function with
domain X. Namely,

T̂ f(x) = f(Tx)

On the spaces of functions f : Y → R or f : Y → C, the operator T̂ is
linear, positive (f ≥ 0 implies T̂ f ≥ 0), and multiplicative (T̂ (fg) = T̂ f · T̂ g).
Also |T̂ f | = T̂ |f | and T̂ (f c) = (T̂ f)c. When (X,B) and (Y, C) are measurable

spaces and T is measurable, the induced map T̂ acts on the space of measurable
functions on Y . Then they are topological spaces and T is continuous, it takes
continuous functions to continuous functions.

For a map T : X → Y between measure spaces, we say that T maps the
measure µ ∈ P(X) to ν ∈ P(Y ) if µ(T−1E) = ν(E) for every measurable set
E ⊆ Y .

Lemma 2.3.1. Let (X,B, µ), (Y, C, ν) be a probability space, and T : X → Y

measurable. Then T maps µ to ν if and only if
´
T̂ f dµ =

´
f dν for every

bounded measurable function f : Y → R (or for every f ∈ C(Y ) if X is a
compact).

Proof. For A ∈ C. Then ˆ
1Adµ = ν(A)
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and, on the other hand, T̂1A(x) = 1A(Tx) = 1T−1A(x), hence

ˆ
T̂1A dµ = µ(T−1A)

Thus µ(T−1A) = ν(A) if and only if
´

1Adν =
´
T̂1Adµ. The latter condition

clealry is equivalent to
´
fdν =

´
T̂ fdµ for all simple functions (i.e. �nite linear

sums of indicator functions); and since since every bounded measurable function

is a bounded limit of simple functions and T̂ preserves monotone limits, by the
bounded convergence theorem, this is equivalent to the desired property.

In the case of a compact metric space, one begins the same way, and com-
pletes the proof using that C(X) ⊆ L1(µ) densely.

Proposition 2.3.2. Let T : X → Y be a map between measurable spaces,
mapping µ ∈ P(X) to ν ∈ P(Y ). Then T̂ maps Lp(ν) isometrically into Lp(µ)
for every 1 ≤ p ≤ ∞. If the spaces are compact and f continuous and onto, then
T̂ maps C(Y ) isometrically into C(X) (with respect to the supremum norm).

Proof. First note that if f is an a.e. de�ned function then T̂ f is also, because
if E is the nullset where f is not de�ned then T−1E is the set where T̂ f is
not de�ned, and µ(T−1E) = ν(E) = 0. Thus T̂ acts on equivalence classes of
measurable functions mod µ. Now, for 1 ≤ p <∞ we have∥∥∥T̂ f∥∥∥p

p
=

ˆ
|T̂ f |p dµ =

ˆ
T̂ (|f |p) dµ =

ˆ
|fp| dν = ‖f‖pp

For p =∞ the claim follows from the identity ‖f‖∞ = limp→∞ ‖f‖p.
In the topological setting, since T is assumed to be onto, it is clear that

supx∈X |f(Tx)| = supy∈Y |f(y)|, and the claim follows.

Corollary 2.3.3. In a measure preserving system (X,B, µ, T ), the induced map

T̂ on functions is a norm-preserving linear operator of Lp, and if T is invertible
then T̂ is an isometry of Lp. If X is compact and T continuous and onto, the
same holds with respect to (C(X), ‖·‖∞).

De�nition 2.3.4. The induced operator T̂ : L2(µ) → L2(µ) in a measure
preserving system is called the Koopman operator.

When T is invertible the Koopman operator is a unitary operator and opens
up the door for using spectral techniques to study the underlying system. We
will return to this idea later. We usually write T instead of T̂ . This introduces
slight ambiguity but the meaning should usually be clear from the context.

As a simple demonstration we end this section by re-formulating Poincare
recurrence in a functional form:

Corollary 2.3.5. Let (X,B, µ, T ) be a measure preserving system and f ∈
L2(µ). Then for a.e. x, if f(x) > 0 then

∑n
i=1 T

if(x)→ 0 as n→∞.
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Proof. For ε > 0 let Eε = {f > ε}. Then by Poincare recurrence, for a.e.
x ∈ Eε we have T if(x) = f(T ix) ∈ Eε for in�nitely many i, so f(T ix) > ε
for in�nitely many i and the series diverges. Thus the series diverges for a.e.
x ∈

⋃∞
n=1E1/n, and the union is equal to {f > 0} up to measure zero.



Chapter 3

Ergodicity

In this section and the following ones we will study how it may be decomposed
into simpler systems.

3.1 Ergodicity

De�nition 3.1.1. Let (X,B, µ, T ) be a measure preserving system. A measur-
able set A ⊆ X is invariant if T−1A = A. The system is ergodic if there are
no non-trivial invariant sets; i.e. every invariant set has measure 0 or 1.

If A is invariant then so is X \A. Indeed,

T−1(X \A) = T−1X \ T−1A = X \A

Thus, ergodicity is an irreducibility condition: a non-ergodic system the dynam-
ics splits into two (nontrivial) parts which do not �interact�, in the sense that
an orbit in one of them never enters the other.

Example 3.1.2. Let X be a �nite set with normalized counting measure, and
T : X → X a 1-1 map. If X consists of a single orbit then the system is ergodic,
since any invariant set that is not empty contains the whole orbit. In general,
X splits into the disjoint (�nite) union of orbits, and each of these orbits is
invariant and of positive measure. Thus the system is ergodic if and only if it
consists of a single orbit.

Note that every (invertible) system splits into the disjoint union of orbits.
However, these typically have measure zero, so do not in themselves prevent
ergodicity.

Example 3.1.3. By taking disjoint unions of measure preserving systems with
the normalized sum of the measures, one gets many examples of non-ergodic
systems.

De�nition 3.1.4. A function f : X → Y for some set Y is invariant if f(Tx) =
f(x) for all x ∈ X.

14
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The primary example is 1A when A is invariant.

Lemma 3.1.5. The following are equivalent:

1. (X,B, µ, T ) is ergodic.

2. If T−1A = A mod µ then µ(A) = 0 or 1.

3. Every measurable invariant function is constant a.e.

4. If f ∈ L1 and f ◦ T = f a.e. then f is constant a.e..

Proof. (1) and (3) are equivalent since an invariant set A produces the invari-
ant function 1A, while if f is invariant and not a.e. constant then there is a
measurable set U in the range of f such that 0 < µ(f−1U) < 1. But this set is
clearly invariant.

Exactly the same argument shows that (2) and (4) are equivalent.
We complete the proof by showing the equivalence of (3) and (4). Clearly

(4) implies (3). Conversely, suppose that f ∈ L1 and Tf = f a.e. Let g =
lim sup f(Tnx). Clearly g is T -invariant (since g(Tx) is the limsup of the shifted
sequence f(Tn+1x), and is the same as the limsup of f(Tnx), which is g(x)).
The proof will be done by showing that g = f a.e. This is true at a point x if
f(Tnx) = f(x) for all n ≥ 0, and for this it is enough that f(Tn+1x) = f(Tnx)
for all n ≥ 0; equivalently, that Tnx ∈ {f ◦ T = f} for all n, i.e. that x ∈⋂
T−n{f ◦ T = f}. But this is an intersection of sets of measure 1 and hence

holds for a.e. x, as desired.

Example 3.1.6 (Irrational circle rotation). Let Rα(x) = e2πiαx be an irrational
circle rotation (α /∈ Q) on S1 with Lebesgue measure. We claim that this system
is ergodic. Indeed, let χn(z) = zn (the characters of the compact group S1) and
consider an invariant function f ∈ L∞(µ). Since f ∈ L2, it can be represented
in L2 as a Fourier series f =

∑
anχn. Now,

Tχn(z) = (e2πiαz)n = e2πinαzn = e2πinαχn

so from
f = Tf =

∑
anTχn =

∑
e2πinαanχn

Comparing this to the original expansion we have an = e2πinαan. Thus if an 6= 0
then e2πinα = 1, which, since α /∈ Q, can occur only if n = 0. Thus f = a0χ0,
which is constant.

Non-ergodicity means that one can split the system into two parts that don't
�interact�. The next proposition reformulates this in a positive way: ergodicity
means that every pair of non-trivial sets do �interact�.

Proposition 3.1.7. The following are equivalent:

1. (X,B, µ, T ) is ergodic.

2. For any B ∈ B, if µ(B) > 0 then
⋃∞
n=N T

−nB = X mod µ for every N .
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3. If A,B ∈ B and µ(A), µ(B) > 0 then µ(A∩T−nB) > 0 for in�nitely many
n.

Proof. (1) implies (2): Given B let B′ =
⋃∞
n=N T

−nB and note that

T−1(B′) =

∞⋃
n=N

T−1T−nB =

∞⋃
n=N+1

T−nB ⊆ B′

Since µ(T−1B′) = µ(B′) we have B′ = T−1B′ mod µ, hence by ergodicity
B′ = X mod µ.

(2) implies (3): Given A,B as in (3) we conclude from (2) that, for every N ,
µ(A ∩

⋃∞
n=N T

−nB) = µ(A), hence there some n > N with µ(A ∩ T−nB) > 0.
This implies that there are in�nitely many such n.

Finally if (3) holds and if A is invariant and µ(A) > 0, then taking B = X\A
clearly A ∩

⋃
T−nB = ∅ for all n so µ(B) = 0 by (3). Thus every invariant set

is trivial.

3.2 Mixing

Although a wide variety of ergodic systems can be constructed or shown ab-
stractly to exist, it is surprisingly di�cult to verify ergodicity of naturally aris-
ing systems. In most cases where ergodicity can be proved, it is because the
system satis�es a stronger �mixing� property.

De�nition 3.2.1. (X,B, µ, T ) is called mixing if for every pair A,B of mea-
surable sets,

µ(A ∩ T−nB)→ µ(A)µ(B) as n→∞

It is immediate from the de�nition that mixing systems are ergodic. The
advantage of mixing over ergodicity is that it is enough to verify it for a �dense�
family of sets A,B. It is better to formulate this in a functional way.

Lemma 3.2.2. For �xed n, and f, g ∈ L2, the map (f, g) 7→
´
f · Tng dµ is

multilinear and
´
f · Tng dµ2 ≤ ‖f‖2 ‖g‖2.

Proof. Multilinearity is immediate using linearity of the induced map T on
functions. Using Cauchy-Schwartz,ˆ

f · Tng dµ ≤ ‖f‖2 ‖T
ng‖2 = ‖f‖2 ‖g‖2

Proposition 3.2.3. A measure preserving system (X,B, µ, T ) is mixing if and
only if for every f, g ∈ L2,ˆ

f · Tng dµ→
ˆ
f dµ ·

ˆ
g dµ as n→∞ (3.1)

Furthermore this limit holds for ail f, g ∈ L2 if and only if it holds for f, g in a
dense subset of L2, if and only if it holds for f, g in a set whose space is dense
in L2(µ).
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Proof. We prove the second statement �rst. Note that both sides of (3.1) are
multilinear in f and g, from which it follows that if we know it for f, g ∈ F then
we know it for f, g ∈ spanF . Thus we must show that if it holds for f, g in a
dense subset F ⊆ L2(µ), then it holds for all f, g ∈ L2(µ).

Also, in order to prove it for all f, g ∈ L2(µ), it is enough to show it for
functions with mean zero, because if we know it in this case, then for general
f, g ∈ L2(µ) if follows by replacing f by f −

´
fdµ and g by g −

´
gdµ.

Thus, suppose that the desired limit holds for all pairs of functions in a
dense subset F ⊆ L2. Let f, g ∈ L2 with mean zero, and for ε > 0 choose
f ′, g′ ∈ F with ‖f − f ′‖ < ε and ‖g − g′‖ < ε. Note, in particular, that∣∣´ (f ′ − f) dµ

∣∣ ≤ ‖f − f ′‖ ‖1‖ by Cauchy-Schwartz, so since f has mean zero,∣∣´ f ′dµ∣∣ < ε; and similarly
∣∣´ g′dµ∣∣ < ε. Therefore,∣∣∣∣ˆ f · Tng dµ

∣∣∣∣ ≤ ∣∣∣∣ˆ (f − f ′ + f ′) · Tn(g − g′ + g′) dµ

∣∣∣∣
≤

∣∣∣∣ˆ (f − f ′) · Tng dµ
∣∣∣∣+

∣∣∣∣ˆ f · Tn(g − g′) dµ
∣∣∣∣+

+

∣∣∣∣ˆ (f − f ′) · Tn(g − g′) dµ
∣∣∣∣+

∣∣∣∣ˆ f ′ · Tng′ dµ
∣∣∣∣

≤ ε ‖g‖+ ‖f‖ ε+

∣∣∣∣ˆ f ′ · Tng′ dµ
∣∣∣∣

→ ε(‖f‖+ ‖g‖) +

∣∣∣∣ˆ f ′dµ

∣∣∣∣ ∣∣∣∣ˆ g′dµ

∣∣∣∣
< ε(‖f‖+ ‖g‖) + ε2

where in the second to last inequality we used the previous lemma twice, and in
the limit we used f ′, g′ ∈ F . Since ε was arbitrary, this shows that

∥∥´ f · Tng dµ∥∥→
0 =
´
fdµ ·

´
gdµ, as claimed.

For the �rst part, using the identities
´

1A dµ = µ(A), Tn1A = 1T−nA and
1A1B = 1A∩B , we see that mixing is equivalent to (3.1) for indicator functions.
If it holds for all L2 functions it certainly does for indicators; convesely, the
linear span of indicators is dense in L2, so by the �rst part, if it holds for
indicators, then it holds in all L2(µ).

Example 3.2.4. Let X = AZ for a �nite set A, take the product σ-algebra, and
µ a product measure with marginal given by a probability vector p = (pa)a∈A.
Let σ : X → X be the shift map (σx)n = xn+1. We claim that this map is
mixing and hence ergodic.

To prove this note that if f(x) = f̃(x1, . . . , xk) depends on the �rst k co-

ordinates of the input, then σnf(x) = f̃(xn+1, . . . , xn+k). If f, g are two such
functions then for n large enough, σng and f depend on di�erent coordinates,
and hence, because µ is a product measure, they are independent in the sense
of probability theory:ˆ

f · σng dµ =

ˆ
f dµ ·

ˆ
σng dµ =

ˆ
f dµ ·

ˆ
g dµ
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so the same is true when taking n → ∞. Mixing follows from the previous
proposition.

We note that one cannot check ergodicity in a similar way. That is, it is
not true that if a dense subset of functions F ⊆ L2(X,B, µ) does not contain
invariant functions (modulo µ), then the system is ergodic.

3.3 Kac's return time formula

We pause to give a nice application of ergodicity to estimation of the �recurrence
rate� of points to a set.

Let (X,B, µ, T ) be ergodic and let µ(A) > 0. Set X0 =
⋃∞
n=1 T

−nA; we have
seen that µ(X0) = 1 (Proposition 3.1.7). Thus for a.e. x there is a minimal
n ≥ 1 with Tnx ∈ A; we denote this number by rA(x) and note that rA is
measurable, since

{rA < k} =
⋃

1≤i<k

T−iA

Theorem 3.3.1 (Kac's formula). Assume that T is invertible. Then
´
A
rA dµ =

1; in particular, E(rA|A) = 1/µ(A), so the expected time to return to A starting
from A is 1/µ(A).

Proof. Let An = A ∩ {rA = n}. Then
ˆ
A

rAdµ =

∞∑
n=1

nµ(An) =

∞∑
n=1

n∑
k=1

µ(T kAn)

The proof will be completed by showing that the sets {T kAn : n ∈ N , 1 ≤ k ≤
n} are pairwise disjoint and that their union has full measure. Indeed, for a.e.
x ∈ X there is a least m ≥ 1 such that y = T−mx ∈ A. Let n = rA(y). Clearly
m ≤ n, since if n < m and Tny ∈ A then Tny = TnT−mx = T−(m−n)x ∈ A
and m− n ≥ 1 is smaller than m. Thus x ∈ TmAn. This shows that the union
of the given family is X up to a null set.

To show that the family is disjoint, suppose x ∈ Tm′An′ for some (m′, n′) 6=
(m,n). We cannot have m′ < m because then T−m

′
x ∈ An′ ⊆ A would contra-

dict minimality of m. We cannot have m′ > m because this would imply that
rA(T−m

′
x) ≥ m′ > m, and at the same time T−mx = Tm

′−m(T−m
′
x) ∈

An ⊆ A, implying rA(T−m
′
x) ≤ m′ − m < m′, a contradiction. Finally,

m = m′ and n 6= n′ is impossible because then then T−mx ∈ An ∩ An′ , de-
spite An ∩An′ 6= ∅.

Even under the stated ergodicity assumption this result strengthens Poincare
recurrence. It shows not only that a.e. x ∈ A returns to A, but that it does so
in �nite expected time, and identi�es the expectation. Simple examples show
that the formula is incorrect in the non-ergodic case.

The invertability assumption is not necessary, it can be removed by �making
the system invertible�. We return to this later.
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3.4 Ergodic measures as extreme points

For a measurable space (X,B) and measurable map T : X → X let PT (X)
denote the set of T -invariant probability measures (if the σ-algebra is relevant
we write PT (X,B), but we usually omit it). It is clear that PT (X) is a convex
set. Recall that a point in a convex set is an extreme point if it cannot be
written as a convex combination of other points in the set. In this section we
shall see that the ergodic invariant measures as precisely the extreme points of
PT (X).

For a measure µ on X we write Tµ for the measure Tµ(A) = µ(T−1A).
The map T sends P(X,B) into itself and clearly, µ is T -invariant if and only if
Tµ = µ.

Lemma 3.4.1. Let (X,B, µ, T ) be an ergodic measure preserving system and
suppose that ν ∈ PT (X) and ν � µ. Then µ = ν.

Proof. Let f = dν/dµ. We claim that f = 1 µ-a.e. Given t let E = {f < t};
it su�ces to show that this set is invariant µ-a.e. We �rst claim that the sets
E \ T−1E and T−1E \ E are of the same µ-measure. Indeed,

µ(E \ T−1E) = µ(E)− µ(E ∩ T−1E)

µ(T−1E \ E) = µ(T−1E)− µ(E ∩ T−1E)

and since µ(E) = µ(T−1E), the right hand sides are equal, and hence also the
left hand sides.

Now

ν(E) =

ˆ
E

f dµ =

ˆ
E∩T−1E

f dµ+

ˆ
E\T−1E

f dµ

On the other hand

ν(E) = ν(T−1E) =

ˆ
T−1E∩E

f dµ+

ˆ
(T−1E)\E

f dµ

Subtracting we �nd that

ˆ
E\T−1E

f dµ =

ˆ
T−1E\E

f dµ

On the left hand side the integral is over a subset of E, where f < t, so the
integral is < tµ(E \T−1E); on the right it is over a subset of X \E, where f ≥ t,
so the integral is ≥ tµ(T−1E \ E). Equality is possible only if the measure of
these sets is 0, and since µ(E) = µ(T−1E), the set di�erence can be a µ-nullset
if and only if E = T−1E mod µ, which is the desired invariance of E.

It follows that f is constant a.e., and since
´
fdµ =

´
1dµ = 1, we have

f ≡ 1 µ-a.e.
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Remark 3.4.2. If T is invertible, there is an easier argument: for any measurable
set A,

ν(A) =

ˆ
A

fdµ

ν(T−1A) =

ˆ
1T−1Adν

=

ˆ
T1A dν

=

ˆ
T1A · fdµ

=

ˆ
1A · T−1f dµ

where in the last line we used
´
gdµ =

´
T−1gdµ applied to g = T1A · f . We

have found that
´
A
fdµ =

´
A
T−1fdµ for all measurable A, hence f ◦ T−1 = f ,

and f is invariant.

Proposition 3.4.3. The ergodic invariant measures are precisely the extreme
points of PT (X).

Proof. If µ ∈ PT (X) is non-ergodic then there is an invariant set A with
0 < µ(A) < 1. Then B = X \ A is also invariant. Let µA = 1

µ(A)µ|A
and µB = 1

µ(B)µ|B denote the normalized restriction of µ to A,B. Clearly

µ = µ(A)µA + µ(B)µB , so µ is a convex combination of µA, µB , and these
measures are invariant:

µA(T−1E) =
1

µ(A)
µ(A ∩ T−1E)

=
1

µ(A)
µ(T−1A ∩ T−1E)

=
1

µ(A)
µ(T−1(A ∩ E))

=
1

µ(A)
µ(A ∩ E)

= µA(E)

Thus µ is not an extreme point of PT (X).
Conversely, suppose that µ = αν + (1 − α)θ for ν, θ ∈ PT (X) and ν 6= µ.

Clearly µ(E) = 0 implies ν(E) = 0, so ν � µ, and by the previous lemma
f = dν/dµ ∈ L1(µ) is invariant. Since 1 = ν(X) =

´
fdµ, we know that f 6= 0,

and since ν 6= µ we know that f is not constant. Hence µ is not ergodic by
Lemma 3.1.5.

As an application we �nd that distinct ergodic measures are also separated
at the spacial level:
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Corollary 3.4.4. Let µ, ν be ergodic measures for a measurable map T of a
measurable space (X,B). Then either µ = ν or µ ⊥ ν.

Proof. Suppose µ 6= ν and let θ = 1
2µ+ 1

2ν. Since this is a nontrivial represen-
tation of θ as a convex combination, it is not ergodic, so there is a nontrivial
invariant set A. By ergodicity, A must have µ-measure 0 or 1 and similarly for
ν. They cannot be both 0 since this would imply θ(A) = 0, and they cannot
both have measure 1, since this would imply θ(A) = 1. Therefore one is 0 and
one is 1. This implies that A supports one of the measures and X \A the other,
so µ ⊥ ν.

This last proposition hints at the fact that we can perhaps partition the
entire space into disjoint subsets, each supporting a single ergoic measure, This
is often the case.

In the previous proposiiton we saw that ergodic measures are precisely the
extreme points of PT (X). In �nite-dimensional vector spaces, a compact convex
set is the convex hull of its extreme points; i.e., every point in it is a convex
combination of extreme points. This gives some reason to believe that perhaps
every invariant measure is a �convex combination� of ergodic ones. Of course
this does not apply to PT (X), which is not generally �nite dimensional and
does not a-priori carry a topology. But if one makes suitable assumptions, the
Choquet theory of convex sets in topological vector spaces can be applied to
get such a result. The topological issue can be addressed by assuming that X
is a compact metric space; then the weak-* topology on measures makes P(X)
compact, and assuming also that T is invariant, PT (X) is closed. Then indeed
every µ ∈ PT (X) is a �convex combination� of extreme points � i.e., of ergodic
measures � in the sense that given µ there exists a measure ν on the (Borel) set
of extreme points such that µ is the barycenter of ν. In other words, µ is an
integral of ergodic measures. Then, for dynamical reasons, one can show that
the representation is also unique.

We will prove all this and somewhat more later on, using more measure-
theoretic tools.
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The ergodic theorem

4.1 A baby case

Let X be a �nite set and T : X → X a bijection. For a function f : X → X,
consider the averages of f along orbits of T , speci�cally, set

SNf(x) =
1

N

N−1∑
n=0

f(Tnx)

We consider the limiting behavior of this average. First, suppose that X consists
of a single T -orbit: X = {x0, Tx0, . . . , T

k−1x0}, so |X| = k. Then for any
x ∈ X, we we have that x, Tx, . . . , T k−1x ranges once over every point in X, and
for each y = T ix, by the same resoning the elements T ix, T i+1x, . . . , T i+k−1x
range once over all elements ofX. Therefore, writing N = nk+r with n = [N/k]
and 0 ≤ r < k, we have that eachpoint in X appears among x, Tx, . . . , Tnkx
exactly n times; thus

N−1∑
i=0

f(T ix) = n
∑
y∈X

f(y) +

nk+p−1∑
i=nk

f(T ix)

= [
N

k
] · k · 1

k

∑
y∈X

f(y) +O(k ‖f‖∞)

Dividing by N and using [N/k] = N/k +O(1), we �nd that

SNf(x) =
1

k

∑
y∈X

f(y) +Ok,f (
1

N
)→ 1

k

∑
y∈X

f(y)

ad N →∞.
Now suppose that X is �nite but not a single orbit. Then it decomposes

into a �nite union of orbits, X =
⋃
Xj . For x ∈ Xj we have by the above that

SNf(x)→ 1

|Xj |
∑
y∈Xj

f(y)

22
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But the right hand side is nothing other than the conditional expectation of f
on the σ-algebra I of T -invariant sets (namely, sets that are unions of complete
orbits). Thus we have found that SNf(x)→ E(f |I)(x).

4.2 Preliminaries

We have seen that in a measure preserving system, a.e. x ∈ A returns to A
in�nitely often. Now we will see that more is true: these returns occur with a
de�nite frequency which, in the ergodic case, is just µ(A); in the non-ergodic
case the limit is µx(A), where µx is the ergodic component to which x belongs.

This phenomenon is better formulated at an analytic level in terms of av-
erages of functions along an orbit. To this end let us introduce some notation.
Let T : V → V be a linear operator of a normed space V , and suppose T is
a contraction, i.e. ‖Tf‖ ≤ ‖f‖. This is the case when T is induced from a
measure-preserving transformation (in fact we have equality). For v ∈ V de�ne

SNv =
1

N

N−1∑
n=0

Tnv

Note that in the dynamical setting, the frequency of visits x to A up to time
N is SN1A(x) = 1

N

∑N−1
n=0 1A(Tnx). Clearly SN is linear, and since T is a

contraction ‖Tnv‖ ≤ ‖v‖ for n ≥ 1, so by the triangle inequality, ‖SNv‖ ≤
1
N

∑N−1
n=0 ‖Tnv‖ ≤ ‖v‖. Thus SN are also contractions. This has the following

useful consequence.

Lemma 4.2.1. Let T : V → V as above and let S : V → V be another bounded
linear operator. Suppose that V0 ⊆ V is a dense subset and that SNv → Sv as
N →∞ for all v ∈ V0. Then the same is true for all v ∈ V .

Proof. Let v ∈ V and w ∈ V0. Then

lim sup
N→∞

‖SNv − Sv‖ ≤ lim sup
N→∞

‖SNv − SNw‖+ lim sup
N→∞

‖SNw − Sv‖

Since ‖SNv − SNw‖ = ‖SN (v − w)‖ ≤ ‖v − w‖ and SNw → Sw (because w ∈
V0), we have

lim sup
N→∞

‖SNv − Sv‖ ≤ ‖v − w‖+ ‖Sw − Sv‖ ≤ (1 + ‖S‖) · ‖v − w‖

Since ‖v − w‖ can be made arbitrarily small, the lemma follows.

4.3 The mean ergodic theorem

Historically, the �rst ergodic theorem is von-Neuman's �mean� ergodic theorem,
which can be formulated in a purely Hilbert-space setting (and it is not hard
to adapt it to LP ). Recall that if T : V → V is a bounded linear operator
of a Hilbert space then T ∗ : V → V is the adjoint operator, characterized by
〈v, Tw〉 = 〈T ∗v, w〉 for v, w ∈ V , and satis�es ‖T ∗‖ = ‖T‖.
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Lemma 4.3.1. Let T : V → V be a contracting linear operator of a Hilbert
space. Then v ∈ V is T -invariant if and only if it is T ∗-invariant.

Remark 4.3.2. When T is unitary (which is one of the main cases of interest to
us) this lemma is trivial. Note however that without the contraction assumption
this is false even in Rd.

Proof. Since (T ∗)∗ = T it su�ces to prove that T ∗v = v implies Tv = v.

‖v − Tv‖2 = 〈v − Tv, v − Tv〉
= ‖v‖2 + ‖Tv‖2 − 〈Tv, v〉 − 〈v, Tv〉
= ‖v‖2 + ‖Tv‖2 − 〈v, T ∗v〉 − 〈T ∗v, v〉
= ‖v‖2 + ‖Tv‖2 − 〈v, v〉 − 〈v, v〉
= ‖Tv‖2 − ‖v‖2

≤ 0

where the last inequality is because T is a contraction.

Theorem 4.3.3 (Hilbert-space mean ergodic theorem). Let T be a linear con-
traction of a Hilbert space V , i.e. ‖Tv‖ ≤ ‖v‖. Let V0 ≤ V denote the closed
subspace of T -invariant vectors (i.e. V0 = ker(T − I)) and π the orthogonal
projection to V0. Then

1

N

N−1∑
n=0

Tnv → πv for all v ∈ V

Proof. If v ∈ V0 then SNv = v and so SNv → v = πv trivially. Since V =
V0 ⊕ V ⊥0 and SN is linear, it su�ces for us to show that SNv → 0 = πv for
v ∈ V ⊥0 . The key insight is that V ⊥0 can be identi�ed as the space of co-
boundaries,

V ⊥0 = {v − Tv : v ∈ V }

or equivalently,

V0 = {v − Tv : v ∈ V }
⊥

(4.1)

Assuming this, by Lemma 4.2.1 we must only show that SN (v − Tv) → 0 for
v ∈ V , and this follows from

SN (v − Tv) =
1

N

N−1∑
n=0

Tn(v − Tv)

=
1

N
(w − TN+1w)

→ 0

where in the last step we used
∥∥w − TN+1w

∥∥ ≤ ‖w‖+
∥∥TN+1w

∥∥ ≤ 2 ‖w‖.
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To prove (4.1) it su�ces to show that w ⊥ {v − Tv : v ∈ V } if and only if
w ∈ V0. For any w and v ∈ V we have the identity

〈w, v − Tv〉 = 〈w, v〉 − 〈w, Tv〉
= 〈w, v〉 − 〈T ∗w, v〉
= 〈w − T ∗w, v〉

We conclude that w ⊥ v − Tv for all v ∈ V if and only if 〈w − T ∗w, v〉 = 0 for
all v ∈ V , if and only if w − T ∗w = 0, which by the previous lemma happens if
and only if w ∈ V0 .

Now let (X,B, µ, T ) be a measure preserving system and let T denote also
the Koopman operator induced on L2 by T . Then the space V0 of T -invariant
vectors is just L2(X, I, µ), where I ⊆ B is the σ-algebra of invariant sets, and
the orthogonal projection π to V0 is just the conditional expectation operator,
πf = E(f |I) (see the Appendix). We derive the following:

Corollary 4.3.4 (Dynamical mean ergodic theorem). Let (X,B, µ, T ) be a
measure-preserving system, let I denote the σ-algebra of invariant sets, and
let π denote the orthogonal projection from L(X,B, µ) to the closed subspace
L2(X, I, µ). Then for every f ∈ L2,

1

N

N−1∑
n=0

Tnf → E(f |I) in L2

In particular, if the system is ergodic then the limit is constant:

1

N

N−1∑
n=0

Tnf →
ˆ
f dµ in L2

Specializing to f = 1A, and noting that L2-convergence implies, for example,
convergence in probability, the last result says that on an arbitrarily large part
of the space, the frequency of visits of an orbit to A up to time N is arbitrarily
close to µ(A), if N is large enough.

Corollary 4.3.5. Let (X,B, µ, T ) be a dynamical system. Let F ⊆ L2(µ) be a

dense set of functions. Then the system is ergodic if and only if lim 1
N

∑N−1
n=0 f

is a constant function for all f ∈ F .

Proof. The limit is the projection of f to L2(I). Since projection is continuous,
and by assumption the image of F is contained in the constant functions, the
image of the projection operator must be contained in the constant functions;
thus L2(I, µ) consists only of constant functions, and the system is ergodic.
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4.4 The pointwise ergodic theorem

Very shortly after von Neumann's discovery of the mean ergodic theorem (and
appearing in print before it), Birkho� proved a stronger version in which con-
vergence takes place a.e. and in L1.

Theorem 4.4.1 (Pointwise ergodic theorem). Let (X,B, µ, T ) be a measure-
preserving system, let I denote the σ-algebra of invariant sets. Then for any
f ∈ L1(µ),

1

N

N−1∑
n=0

Tnf → E(f |I) a.e. and in L1

In particular, if the system is ergodic then the limit is constant:

1

N

N−1∑
n=0

Tnf →
ˆ
f dµ a.e. and in L1

We shall see several proofs of this result. The �rst and most �standard� proof
follows the same scheme as the mean ergodic theorem: one �rst establishes the
statement for a dense subspace V ⊆ L1, and then uses some continuity property
to extend to all of L1. The �rst step is nearly identical to the proof of the mean
ergodic theorem.

Proposition 4.4.2. There is a dense subspace V ⊆ L1such that the conclusion
of the theorem holds for every f ∈ V .

Proof. We temporarily work in L2. Let V1 denote the set of invariant f ∈ L2,
for which the theorem holds trivially because SNf = f for all N . Let V2 ⊆ L2

denote the linear span of functions of the form f = g − Tg for g ∈ L∞. The
theorem also holds for these, since∥∥g + TN+1g

∥∥
∞ ≤ ‖g‖∞ +

∥∥TN+1g
∥∥
∞ = 2 ‖g‖∞

and therefore

1

N

N−1∑
n=0

Tn(g − Tg) =
1

N
(g − TN+1g)→ 0 a.e. and in L1

Set V = V1 + V2. By linearity of SN , the theorem holds for f ∈ V1 + V2. Now,
L∞ is dense in L2 and T is continuous on L2, so V 2 = {g − Tg : g ∈ L2}. In
the proof of the mean ergodic theorem we saw that L2 = V1⊕V 2, so V = V1⊕V2

is dense in L2, and hence in L1, as required.

By Lemma 4.2.1, this proves the ergodic theorem in the sense of L1-convergence
for all f ∈ L1. In order to similarly extend the pointwise version to all of L1

we need a little bit of �continuity�, which is provided by the following.
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Theorem 4.4.3 (Maximal inequality). Let f ∈ L1with f ≥ 0 and SNf =
1
N

∑N−1
n=0 T

nf . Then for every t,

µ

(
x : sup

N
SNf(x) > t

)
≤ 1

t

ˆ
f dµ

Before giving the proof let us show how this �nishes the proof of the ergodic
theorem. Write S = E(·|I), which is a bounded linear operator on L1, let f ∈ L1

and g ∈ V . Then

|SNf − Sf | ≤ |SNf − SNg|+ |SNg − Sg|
≤ SN |f − g|+ |SNg − Sf |

Now, SNg → Sg a.e., hence |SNg − Sf | → |S(g − f)| ≤ S|f − g| a.e. Thus,

lim sup
N→∞

|SNf − Sf | ≤ lim sup
N→∞

SN |f − g|+ S|g − f |

If the left hand side is > ε then at least one of the terms on the right is > ε/2.
Therefore,

µ

(
lim sup
N→∞

|SNf − Sf | > ε

)
≤ µ

(
lim sup
N→∞

SN |f − g| > ε/2

)
+µ (S|g − f | > ε/2)

Now, by the maximal inequality, the �rst term on the right side is bounded by
1
ε/2 ‖f − g‖. By the fact that S is conditional expectation we have

´
Shdµ =´

h dµ for all h ∈ L1, so by Markov's inequality, the second term is bounded by
1
ε/2 ‖g − f‖ as well. Thus, for any ε > 0 and g ∈ V we have found that

µ

(
lim sup
N→∞

|SNf − Sf | > ε

)
≤ 4

ε
‖f − g‖

For each �xed ε > 0, the right hand side can be made arbitrarily close to 0,
hence lim sup |SNf−Sf | = 0 a.e. which is just SNf → Sf = E(f |I), as claimed.

We now return to the maximal inequality which will be proved by reducing
it to a purely combinatorial statement about functions on the integers. Given a
function f̂ : N→ [0,∞) and a set ∅ 6= I ⊆ N, the average of f̂ over I is denoted

SI f̂ =
1

|I|
∑
i∈I

f̂(i)

In the following discussion we write [i, j] also for integer segments, i.e. [i, j]∩Z.

Proposition 4.4.4 (Discrete maximal inequality). Let f̂ : N → [0,∞). Let
J ⊆ I ⊆ N be �nite intervals, and for each j ∈ J let Ij ⊆ I be a sub-interval of

I whose left endpoint is j. Suppose that SIj f̂ > t for all j ∈ J . Then

SI f̂ > t · |J |
|I|
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Proof. Suppose �rst that the intervals {Ij} are disjoint. Then together with

U = I \
⋃
Ij they form a partition of I, and by splitting the average SI f̂

according to this partition, we have the identity

SI f̂ =
|U |
|I|

SU f̂ +
∑ |Ij |
|I|

SIj f̂

Since f̂ ≥ 0 also SU f̂ ≥ 0, and so

SI f̂ ≥
∑ |Ij |
|I|

SIj f̂ ≥
1

|I|
∑

t|Ij | ≥ t
|
⋃
Ij |
|I|

Now, {Ij}j∈J is not a disjoint family, but the above applies to every disjoint
sub-collection of it. Therefor we will be done if we can extract from {Ij}j∈J a
disjoint sub-collection whose union is of size at least |J |. This is the content of
the next lemma.

Lemma 4.4.5 (Covering lemma). Let I, J, {Ij}j∈J be intervals as above. Then
there is a subset J0 ⊆ J such that (a) J ⊆

⋃
i∈J0 Ij and (b) the collection of

intervals {Ji}i∈J0 is pairwise disjoint.

Proof. Let Ij = [j, j+N(j)−1]. We de�ne J0 = {jk} by induction using a greedy
procedure. Let j1 = min J be the leftmost point. Assuming we have de�ned j1 <
. . . < jk such that Ij1 , . . . , Ijkare pairwise disjoint and cover J∩[0, jk+N(jk)−1].
As long as this is not all of J , de�ne

jk+1 = min{I \ [0, jk +N(jk)− 1]}

It is clear that the extended collection satis�es the same conditions, so we can
continue until we have covered all of J .

We return now to the dynamical setting. Each x ∈ X de�nes a function
f̂ = f̂x : N→ [0,∞) by evaluating f along the orbit:

f̂(i) = f(T ix)

Let
A = {sup

N
SNf > t}

and note that if T jx ∈ A then there is an N = N(j) such that SNf(T jx) > t.
Writing

Ij = [j, j +N(j)− 1]

this is the same as
SIj f̂ > t

Fixing a large M (we eventually take M → ∞), consider the interval I =
[0,M − 1] and the collection {Ij}j∈J , where

J = Jx = {0 ≤ j ≤M − 1 : T jx ∈ A and Ij ⊆ [0,M − 1]}
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The proposition then gives

S[0,M−1]f̂ > t · |J |
M

In order to estimate the size of J we will restrict to intervals of some bounded
length R > 0 (which we eventually will send to in�nity). Let

AR = { sup
0≤N≤R

SNf > t}

Then
J ⊇ {0 ≤ j ≤M −R− 1 : T jx ∈ AR}

and if we write h = 1AR , then we have

|J | ≥
M−R−1∑
j=0

ĥ(j)

= (M −R− 1)S[0,M−R−1]ĥ

With this notation now in place,the above becomes

S[0,M−1]f̂x > t · M −R− 1

M
· S[0,M−R−1]ĥx (4.2)

and notice that the average on the right-hand side is just frequency of visits to
AR up to time M .

We now apply a general principle called the transference principle, which
relates the integral

´
g dµ of a function g : X → R its discrete averages SI ĝ

along orbits: using
´
g =
´
Tng, we have

ˆ
g dµ =

1

M

M−1∑
m=0

ˆ
Tmg dµ

=

ˆ (
1

M

M−1∑
m=0

Tmg

)
dµ

=

ˆ
S[0,M−1]ĝx dµ(x)

Applying this to f and using 4.2, we obtain
ˆ
f dµ = S[0,M−1]f̂x

> t · M −R− 1

M
·
ˆ
h dµ

= t · (1− R− 1

M
) ·
ˆ

1AR dµ

= t · (1− R− 1

M
) · µ(AR)
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Letting M →∞, this is ˆ
f dµ > t · µ(AR)

Finally, letting R → ∞ and noting that µ(AR) → µ(A), we conclude that´
f dµ > t · µ(A), which is what was claimed.

Example 4.4.6. Let (ξn)∞n=1 be an independent identically distributed se-
quence of random variables represented by a product measure on (X,B, µ) =
(Ω,F , P )N, with ξn(ω) = ξ(ωn) for some ξ ∈ L1(Ω,F , P ). Let σ : X → X be
the shift, which preserves µ and is ergodic, and ξn = ξ0(σn). Since the shift
acts ergodically on product measures, the ergodic theorem implies

1

N

N−1∑
n=0

ξn =
1

N

N−1∑
n=0

σnξ0 → E(ξ0|I) = Eξ0 a.e.

Thus the ergodic theorem generalizes the law of large numbers. However it is a
very broad generalization: it holds for any stationary process (ξn)∞n=1 without
any independence assumption, as long as the process is ergodic.

When T is invertible it is also natural to consider the two-sided averages
SN = 1

2N+1

∑N
n=−N T

nf . Up to an extra term 1
2N+1f , this is just

1
2SN (T, f) +

1
2SNT

−1, f), where we write SN (T, f) to emphasize which map is being used.
Since both of these converge in L1 and a.e. to the same function E(f |I), the
same is true for SNf .

4.5 (*) Sub-additive ergodic theorem

Theorem 4.5.1 (Subadditive ergodic theorem). Let (X,B, µ, T ) be an ergodic
measure-preserving system. Suppose that fn ∈ L1(µ) satisfy the subadditivity
relation

fm+n(x) ≤ fm(x) + fn(Tmx)

and are uniformly bounded above, i.e. fn ≤ L for some L. Then limn→∞
1
nfn(x)

exists a.e. and is equal to the constant limn→∞
1
n

´
fn.

Before giving the proof we point out two examples. First, if fn =
∑n−1
k=0 T

kg
then fn satis�es the hypothesis, so this is a generalization of the usual ergodic
theorem (for ergodic T ).

For a more interesting example, let An = A(Tnx) be a stationary sequence of
d×d matrices (for example, if the entries are i.i.d.). Let fn = log ‖A1 · . . . ·An‖
satis�es the hypothesis. Thus, the subadditive ergodic theorem implies that
random matrix products have a Lyapunov exponent � their norm growth is
asymptotically exponential.

Proof. Let us �rst make a simple observation. Suppose that {1, . . . , N} is par-
titioned into intervals {[ai, bi)}i∈I . Then subadditivity implies

fN (x) ≤
∑
i∈I

fbi−ai(T
aix)
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Let

a = lim inf
1

n
fn

We claim that a is invariant. Indeed,

1

n
fn(Tx) ≥ 1

n
(fn+1(x)− f1(x))

From this it follows that a(Tx) ≥ a(x) so by ergodicity a is constant.
Fix ε > 0. Since lim inf 1

nfn = a there is an N such that the set

A = {x :
1

n
fn(x) < a+ ε for some 0 ≤ n ≤ N}

satis�es µ(A) > 1− ε.
Now �x a typical point x. By the ergodic theorem, for every large enough

M ,

1

M

M−1∑
n=0

1A(Tnx) > 1− ε

Fix such an M and let

I0 = {0 ≤ n ≤M −N : Tnx ∈ A}

For i ∈ I0 there is a 0 ≤ ki ≤ N such that 1
kfki(T

ix) < a+ε. Let Ui = [i, n+kn).
Applying the covering lemma, Lemma 4.4.5, there is a subset I1 ⊆ I0 such that
{Ui}i∈I1 are pairwise disjoint and |

⋃
i∈I1 Ui| ≥ |I0| > (1−ε)M . By construction

also
⋃
i∈I1 Ui ⊆ [0,M).

Choose an enumeration {Ui}i∈I2 of the complementary intervals in [0,M) \⋃
i∈Ii Ui, so that {Ui}i∈I1∪I2 is a partition of [0,M). Writing Ui = [ai, bi) and

using the comment above, we �nd that (recall that L is a pointwise upper bound
on fn):

1

M
fM (x) ≤ 1

M

(∑
i∈I1

fbi−ai(T
aix) +

∑
i∈I2

fbi−ai(T
aix)

)

≤
∑
n∈I1 |Ui|
M

(a+ ε) +

∑
n∈I2 |Ui|
M

L

≤ (a+ ε) + εL

Since this holds for all large enoughM , for all ε, we conclude that lim sup 1
M fM ≤

a = lim inf 1
nfn so the limit exists and is equal to a.

It remains to identify a = lim 1
n

´
fn. First note thatˆ

fm+n ≤
ˆ
fmdµ+

ˆ
fn ◦ Tmdµ =

ˆ
fmdµ+

ˆ
fndµ

so an =
´
fndµ is subadditive, hence the limit a′ = lim 1

nan exists. By Fatou's
lemma (since fn ≤ L we can apply it to −fn) we get

a =

ˆ
lim sup

1

n
fndµ ≥ lim sup

ˆ
1

n
fndµ = lim

1

n
an = a′
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Suppose the inequality were strict, a′ < a− ε for some ε > 0 and let n be such
that an < a− ε. Note that for every 0 ≤ p ≤ n− 1 we have the identity

fN (x) ≤ fp(x) +

[N/n]−1∑
k=0

fn(T kn+px) + fN−p−n([N/n]−1))(T
p+n([N/n]−1))x)

Averaging this over 0 ≤ p < n, we have

1

N
fN ≤ SN (

1

n
fn) +O(

n

N
)

This by the ergodic theorem,

lim
N→∞

1

N
fN ≤ lim

N→∞
SN (

1

n
fn) =

ˆ
1

n
fn < a− ε

which is a contradiction to the de�nition of a.

4.6 (*) Further generalizations

4.6.1 Group actions

Let G be a countable group. A measure preserving action of G on a measure
space (X,B, µ) is, �rst of all, an action, that is a map G×X → X, (g, x) 7→ gx,
such that g(hx) = (gh)(x) for all g, h ∈ G and x ∈ X. In addition, for each
g ∈ G the map Tg : x 7→ gx must be measurable and measure-preserving. It is
convenient to denote the action by {Tg}g∈G.

An invariant set for the action is a set A ∈ B such tat TgA = A for all g ∈ G.
If every such set satis�es µ(A) = 0 or µ(X \A) = 0, then the action is ergodic.
There is an ergodic decomposition theorem for such actions, but for simplicity
(and without loss of generality) we will assume that the action is ergodic.

For a function f : X → R the function Tgf = f ◦ Tg−1 : X → R has the
same regularity, and {Tg}g∈G gives an isometric action on Lp for all 1 ≤ p ≤ ∞.
Given a �nite set E ⊆ G let SEf be the functions de�ned by

SEf(x) =
∑
g∈E

f(Tgx)

As before, this is a contraction in Lp. We say that a sequence En ⊆ G of �nite
sets satis�es the ergodic theorem along {En} if SEnf →

´
f , in a suitable sense

(e.g. in L2 or a.e.) for every ergodic action and every suitable f .

De�nition 4.6.1. A group G is amenable if there is a sequence of sets En ⊆ G
such that for every g ∈ G,

|Eng∆En|
|En|

→ 0

Such a sequence {En} is called a Følner sequence.
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For example, Zd is a amenable because En = [−n, n]d ∩ Zd satis�es

|(En + u) ∩ En| = |En−‖u‖∞ | = |En|+ o(1)

The class of amenable groups is closed under taking subgroups and countable
increasing unions, and if G and N C G are amenable so is G/N . Groups of
sub-exponential growth are amenable; the free group is not amenable, but there
are amenable groups of exponential growth.

Theorem 4.6.2. If {En} is a Følner sequence in an amenable group G then the
ergodic theorem holds along {En} in the L2 sense (the mean ergodic theorem).

Proof. Let
V0 = span{f − Tgf : f ∈ L2 , g ∈ G}

One can show exactly as before that V ⊥0 consists of the invariant functions
(in this case, the constant functions, because we are assuming the action is
ergodic). Then one must only show that SEn(f − Tgf) → 0 for f ∈ L2. But
this is immediate from the Følner property, since

SEnf − SEnTgf = SEn\Enr−1f

and therefore∥∥∥∥ 1

|En|
SEn(f − Tgf)

∥∥∥∥
2

≤ 1

|En|
|En \ Eng−1| · ‖f‖2 ≤

|En∆Eng
−1|

|En|
‖f‖2 → 0

This proves the mean ergodic theorem.

The proof of the pointwise ergodic theorem for amenable groups is more
delicate and does not hold for every Følner sequence. However, one can reduce
it as before to a maximal inequality. What one then needs is an analog of the
discrete maximal inequality, which now concerns functions f̂ : G→ [0,∞), and
requires an analog of the covering Lemma 4.4.5. Such a result is known under
a stronger assumption on {En}, namely assuming that |

⋃
k<nE

−1
k En| ≤ C|En|

for some constant C and all n. Every Følner sequence has a subsequence that
satis�es this, and so every amenable group has a sequence along which the
pointwise ergodic theorem holds a.e. and in L1.

Outside of amenable groups one can also �nd ergodic theorems. The sim-
plest to state is for the free group Fs on s generates g±1

1 , . . . , g±1
s . This is a

non-amenable group which can be identi�ed with the set of words in the gen-
erators that don't contain any occurrence of uu−1. The group operation is
concatenation follows by reduction, that is, repeatedly deleting any pair ss1.
For example the product of words aba−1c and c−1abb is

aba−1cc−1abb = aba−1abb = abbb

the right hand side is reduced.
Let En ⊆ Fs denote the set of reduced words of length ≤ n.
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Theorem 4.6.3 (Nevo-Stein, Bufetov). If Fs acts ergodically by measure pre-
serving transformations on (X,B, µ) then for every SEnf →

´
f for every

f ∈ L1(µ).

There is a major di�erence between the proof of this result and in the
amenable case. Because |En∆Eng

−1|/|En| 6→ 0, the there is no trivial rea-
son for the averages of co-boundaries to tend to 0. Consequently there is no
natural dense set of functions in L1 for which convergence holds. In any case,
the maximal inequality is not valid either. The proof in non-amenable cases
takes completely di�erent approaches (but we will not discuss them here).

4.6.2 Hopf's ergodic theorem

Another generalization is to the case of a measure-preserving transformation
T of a measure space (X,B, µ) with µ(X) = ∞ (but σ-�nite). Ergodicity is
de�ned as before � all invariant sets are of measure 0 or their complement is
of measure 0. It is also still true that T : L2(µ) → L2(µ) is norm-preserving,
and so the mean ergodic theorem holds: SNf → πf for f ∈ L2, where π is the
projection to the subspace of invariant L2 functions. Now, however, the only
constant function that is integrable is 0, and we �nd that SNf → 0 in L2. In
fact this is true in L1 and a.e. The meaning is, however, the same: if we take a
set of �nite measure A, this says that the fraction of time an orbit spends in A
is the same as the relative size of A compared to Ω; in this case µ(A)/µ(Ω) = 0.

Instead of asking about the absolute time spent in A, it is better to consider
two sets A,B of positive �nite measure. Then an orbit visits both with frequency
0, but one may expect that the frequency of visits to A is µ(A)/µ(B)-times the
frequency of visits to B. This is actually he case:

Theorem 4.6.4 (Hopf). If T is an ergodic measure-preserving transformation
of (X,B, µ) with µ(X) =∞, and if f, g ∈ L1(µ) and

´
gdµ 6= 0, then∑N−1

n=0 T
nf∑N−1

n=0 T
ng
−−−−→
N→∞

´
fdµ´
gdµ

a.e.

Since the right hand side is usually not 0, one cannot expect this to hold in
L1.

Hopf's theorem can also be generalized to group actions, but the situation
there is more subtle, and it is known that not all amenable groups have sequences
En such that

∑
En
T gf/

∑
En
T gh→

´
f/
´
h.
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The ergodic decomposition

theorem

5.1 Ergodic decomposition: overview

Having described those systems that are �indecomposable�, we now turn to study
how a non-ergodic system may decompose into ergodic ones.

Example 5.1.1. If T : X → X is a bijection of a �nite setX, and µ an invariant
measure. We claim that µ is a convex combination of invariant measures.

We give two proos of this. The �rst approach is to decompose the space
into �minimal� oinvariant sets, and condition µ on each one. To begin, note
that µ is just a function µ : X → [0, 1] such that

∑
x∈X µ(x) = 1. By measure

preservation, µ(Tx) = µ(x), so µ is constant along orbits. Now, X is partitiones
into disjoint T -orbits O1, . . . , Ok, and by the above, µ is constnat on each orbit:
µ|Oi ≡ pi for some pi ≥ 0. If we write µi for the normalized counting measure
on Oi, then

pi · |Oi| · µi = µ|Oi
Thus

µ =
∑

µ|Oi =
∑

pi|Oi| · µi

The weights pi|Oi| sum to one (e.g. evaluate the equation above on X), and
each µi is ergodic, because a cyclic permutation has no invariant sets. Thus µ
is a convex combination of ergodic measures.

Our second proof uses convex geometry. PT (X) is a �nite-dimensional com-
pact convex set, being just the set of µ ∈ RX such that

∑
x∈X µ(x) = 0 and

µ(Tx) = µ(x) ≥ 0 for all x ∈ X. We have seen already that the ergodic mea-
sures are its extreme points. It is a theorem that in a �nite dimensional vector
space, a compact convex set is the convex hull of its extreme points. Thus, every
invariant measure is a convex combination of ergodic measures.

35
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In general, it is too much to ask that every invariant measure be a convex
combination of ergodic ones:

Example 5.1.2. Let X = [0, 1] with Borel sets and Lebesgue measure µ, and
T the identity map. Then the only ergodic measures are point masses δx, and
we cannot write µ as a �nite convex combination of ergodic measures.

It is possible to generalize both approaches from the �rst example to the con-
text of general measure preserving systems. The second approach requires one to
develop the Choquet theory of representations of points in in�nite-dimensional
convex sets. While elegant, this would take us a bit out of the way. Instead
we choose the �rst approach, which involves conditioning the measure on the
σ-algebra of invariant sets. In the next few sections we develop the machinery
for doing this, and then begin the proof itself.

5.2 Measure integration

A convex combination of probability measures is again a probability measure,
Below we introduce temrinology for dealing with integrals of measures, rather
than �nite sums of them.

Given a measurable space (X,B), a family {νx}x∈X of probability measures
on (Y, C) is measurable if for every E ∈ C the map x 7→ νx(E) is measurable
(with respect to B). Equivalently, for every bounded measurable function f :
Y → R, the map x 7→

´
f(y) dνx(y) is measurable.

Given a measure µ ∈ P(X) we can de�ne the probability measure ν =´
νxdµ(x) on Y by

ν(E) =

ˆ
νx(E) dµ(x)

For bounded measurable f : Y → R this givesˆ
f dν =

ˆ
(

ˆ
f dνx) dµ(x)

and the same holds for f ∈ L1(ν) by approximation (although f is de�ned only
on a set E of full ν-measure, we have νx(E) = 1 for µ-a.e. x, so the inner
integral is well de�ned µ-a.e.).

Example 5.2.1. Let X be �nite and B = 2X . Thenˆ
νx dµ(x) =

∑
x∈X

µ(x) · νx

Any convex combination of measures on Y can be represented this way, so the
de�nition above generalizes convex combinations.

Example 5.2.2. Any measure µ on (X,B) the family {δx}x∈X is measurable
since δx(E) = 1E(x), and µ =

´
δx dµ(x) because

µ(X) =

ˆ
1E(x)dµ(x) =

ˆ
νx(E) dµ(x)
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In this case the parameter space was the same as the target space.
In particular, this representation shows that Lebesgue measure on [0, 1] is

an integral of ergodic measures for the identity map.

Example 5.2.3. X = [0, 1] and Y = [0, 1]2. For x ∈ [0, 1] let νx be Lebesgue
measure on the �ber {x} × [0, 1]. Measurability is veri�ed using the de�nition
of the product σ-algebra, and by Fubini's theorem

ν(E) =

ˆ
νx(E)dµ(x) =

ˆ 1

0

ˆ 1

0

1E(x, y)dy dx =

ˆ ˆ
E

1dxdy

so ν is just Lebesgue measure on [0, 1]2.
One could also represent ν as

´
νx,y dν(x, y) where νx,y = νx. Written this

way each �ber measure appears many times.

5.3 Measure disintegration

We now turn to the problem of de�ning conditional measures. This is easy to
do if we want to condition on sets of positive measure, or when we condition on
a �nite partition.

Example 5.3.1. Let (X,B, µ) be a probability space and let P = {P1, . . . , Pn}
be �nite partition of it, i.e. Pi are measurable, Pi ∩ Pj = ∅ for i 6= j, and
X =

⋃
Pi. For simplicity assume also that µ(Pi) > 0. Write µi = 1

µ(Pi)
µ|Pi ,

which is a probability meausre on Pi. Then

µ =
∑
i

µ(Pi) · µi

and we have written µ as a convex combination of probability measures, one on
each atom of P. We can write this as an integral as follows: Let i = i(x) denote
the unique index such that x ∈ Pi and let µx = µi(x). Then µ{x : i(x) = j} =
µ(Pj), and since x 7→ µx takes on the value µj on Pj we have

µ =

ˆ
µx dµ(x)

Our goal is to give a similar decomposition of a measure with respect to an
in�nite (usually uncountable) partition E of X. Then the partition elements
E ∈ E typically have measure 0, and the formula 1

µ(E)µ|E no longer makes

sense. As in probability theory one can de�ne the conditional probability of an
event E given that x ∈ E as the conditional expectation E(1E |P) evaluated at
x (conditional expectation is reviewed in the Appendix). This would appear to
give the desired decomposition: de�ne µx(E) = E(1E |E)(x). For any countable
algebra this does give a countably additive measure de�ned for µ-a.e. x. The
problem is that for each set E, the measure µx(E) is de�ned only for a.e. x, but
we want to de�ne µx(E) for all measurable sets. Overcoming this problem is a
technical but nontrivial chore which will occupy us for the rest of the section.
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For a measurable space (X,B) and a sub-σ-algebra E ⊆ B generated by a
countable sequence {En}. Write x ∼E y if 1E(x) = 1E(y) for every E ∈ E , or
equivalently, 1En(x) = 1En(y) for all n. This is an equivalence relation. The
atoms of E are by de�nition the equivalence classes of ∼E , which are measurable,
being intersections of sequences Fn of the form Fn ∈ {En, X \ En}. We denote
E(x) the atom containing x.

In the next theorem we assume that the space is compact, which makes the
Riesz representation theorem available as a means for of de�ning measures. We
shall discuss this restriction afterwards.

Theorem 5.3.2. Let X be compact metric space, B the Borel algebra, and
E ⊆ B a countably generated sub-σ-algebra. Then there is an E−measurable
family {µy}y∈X ⊆ P(X) such that µy is supported on E(y) and

µ =

ˆ
µy dµ(y)

Furthermore if {µ′y}y∈X is another such system then µy = µ′y a.e.

Note that E-measurability has the following consequence: For µ-a.e. y, for
every y′ ∈ E(y) we have µy′ = µy (and, since µy(E(y)) = 1, it follows that
µy′ = µy for µy-a.e y

′).

De�nition 5.3.3. The representation µ =
´
µy dµ(y) in the proof is often called

the disintegration of µ over E .

We sketch the main steps of the proof. A detailed proof can be found in the
appendix.

Step 1 Choose a countable dense Q-linear subspace V ≤ C(X), and for f ∈ V
de�ne

f = E(f |E)

Since V is countable, for µ-a.e. y the function f̃ is de�ned at y for all
f̃ ∈ V and we can de�ne Λy : V → R by

Λy(f) = f(y)

Furthermroe the linearity and positivity properties of conditional expec-
tation hold for a.e. y, so for a.,e. y the function Λy is a bounded positive
Q-linear functional (V, ‖·‖∞), and extends to a bounded linear functional
Λy : C(X)→ R. which, by the Riesz representation theorem, corresponds
to a measure µy ∈ P(X) with

Λyf =

ˆ
f(x) dµy(x) for f ∈ C(X)

Step 2 One shows for A ∈ B that µy(A) = E(1A|E)(y) a.e., and in par-
ticular y → µy is measurable. For this, one begins from the relation
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´
fdµy = E(f |E)(y) a.e., which we know for continuous f . For closed A

one approximates 1A as a pointwise limit of continuous functions to get
the desired conclusion. Then one shows that the set of A with the desired
property is a monotone class.

Step 3 Using monotone convergence and simple functions, one shows that´
fdµy = E(f |E)(y) a.e., for all f ∈ L1(µ).

Step 4 For E ∈ E we now know that µy(E) = E(1E |E)(y) = 1E(y) a.s. Ap-
plying this to a sequence of sets {Ei} generting E , we deduce that a.s. µy
is supported on an atom of E , that is, every set in E has µy-mass 0 or 1
(this is where we use the countable generation assumption).

Step 5 We prove uniqueness: given another family {µ′y} with the same prop-

erties, we de�ne an operator L1(B, µ)→ L1(E , µ) by f̃(y) =
´
fdµy. This

operator is clearly linear and one can show that it has theproperty that

g̃f = g · f̃ when g ∈ L∞(E , µ). This implies that f 7→ f̃ is just the condi-
tional operator on E , and this implies that

´
fdµ′y =

´
fdµy a.e. for every

continuous function. From this we conclude µ′y = µy a.e.

It remains to address the compactness assumption on X. Examples show that
one the disintegration theorem does require some assumption; it does not hold
for arbitrary measure spaces and sub-σ-algebras. So we will not eliminate the
compactness assumption, but it is not a large restriction.

De�nition 5.3.4. A Polish space is a separable complete metric space.

De�nition 5.3.5. A standard Borel space is a measurable space (X,B) for
which there exists a metric on X under which X is Polish and B is he σ-algebra
of Borel sets.

In �real life�, essentially all spaces are standard.

Theorem 5.3.6. Any two uncountable standard Borel spaces are isomorphic,
i.e. there is a measurable bijective map betwen them with measurable inverse,
and which maps the σ-algebras to each other.

In particular, if we are given a standard Borel space, then we may always
assume that the underlying space is compact metric and the σ-algebra is the
algebra of Borel sets. Thus, we can re-formulate the disintegration theorem as
follows.

Theorem 5.3.7. Let µ be a probability measure on a standard Borel space
(X,B, µ) and E ⊆ B a countably generated sub-σ-algebra. Then there is an
E-measurable family {µy}y∈Y ⊆ P(X,B) such that µy is supported on E(y) and

µ =

ˆ
µy dµ(y)

Furthermore if {µ′y}y∈X is another such system then µy = µ′y .
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5.4 The ergodic decomposition

Let (X,B, µ, T ) be a measure preserving system on a Borel space. Let I ⊆ B
denote the family of T -invariant measurable sets. It is easy to check that I is a
σ-algebra.

The σ-algebra I in general is not countably generated. Consider the case
of an ergodic system, and suppose that I were countably generated by sets
{In}∞n=1. By ergodicity, for each n either µ(In) = 1 or µ(X \ In) = 1; set
Fn = In or Fn = X \ In according to these possibilities. Then F =

⋂
Fn is

an invariant set of measure 1 and is an atom of I. Now note that if x ∈ F
then the orbit of x is invariant, and also measuable, since it is countable. Thus
OT (x) ∈ I. But also OT (x) ⊆ F , and F is an atom of I, so F = OT (x). But
now F is a countable set of full measure, contradicting non-atomicity of µ.

We shall work instead with a �xed countably generated µ-dense sub-σ-
algebra I0 of I. Let L1(X, I, µ) be a closed subspace of L1(X,B, µ). Since
the latter is separable (by standardness of the space), so is the former. Choose
a dense countable sequence fn ∈ L1(X, I, µ), choosing representatives of the
functions that are genuinely I measurable, not just modulo a B-measurable
nullset. Let I0 denote the smallest σ-algebra with respect the fn are all mea-
surable, so I0 is countably generated (e.g. it the algebra generated by the sets
An,p,q = {p < fn < q} with p, q ∈ Q. Clearly I0 ⊆ I and all of the fn are
I0-measurable, so L1(X, I0, µ) = L1(X, I, µ). In particular, I is contained in
the µ-completion of I0.

The choice of I0 is highly non-cannonical. It is possible to make a more
cannonical choice; see Section 6.

Theorem 5.4.1 (Ergodic decomposition theorem). Let (X,B, µ, T ) be a mea-
sure preserving system on a standard space, and let I, I0 be as above. Then
there is an I0-measurable (and in particular I-measurable) disintegration µ =´
µx dµ(x) of µ such that a.e. µy is T -invariant, ergodic, and supported on
I0(y). Furthermore the representation is unique in the sense that if {µ′y} is any
other family with the same properties then µy = µ′y for µ-a.e. y.

Let {µy}y∈X be the disintegration of µ relative to I0, we need only show
that for µ-a.e. y the measure µy is T -invariant and ergodic.

Claim 5.4.2. For µ-a.e. y, µy is T -invariant.

Proof. De�ne µ′y = Tµy. This is an I0 measurable family since for any E ∈ B,
µ′y(E) = µy(T−1E) so measurability of y 7→ µ′y(E) follows from that of y 7→
µy(T−1E). We claim that {µ′y}y∈X is a disintegration of µ over I0. Indeed, for
any E ∈ B,

ˆ
(

ˆ
µ′y(E)) dµ(y) =

ˆ
(

ˆ
µy(T−1E)) dµ(y)

= µ(T−1E)

= µ(E)



CHAPTER 5. THE ERGODIC DECOMPOSITION THEOREM 41

Also T−1I0(y) = I0(y) (since I0(y) ∈ I) so

µ′y(I0(y)) = µy(T−1I0(y)) = µy(I0(y)) = 1

so µ′y is supported on I0(y). Thus, {µ′y}y∈X is an I0-measurable disintegration
of µ, hence µ′y = µy a.e. This is exactly the same as a.e. T -invariance of µy.

Claim 5.4.3. For µ-a.e. y, µy is ergodic.

Proof. Fix a countable dense family F ⊆ C(X). Then by the ergodic theorem
applied to (X,B, µ, T ), for every f ∈ F we have

SNf(y)→ Eµ(f |I)(y) = Eµ(f |I0)(y) µ-a.e.

where the equality is because I = I0 mod µ. Since F is countable, for µ-a.e. y
we have

SNf(y)→ Eµ(f |I0)(y) for all f ∈ F

Since µ =
´
µxdµ(x), for µ-a.e. z, the limit above holds for µz-a.e. y; in

addition for µz-a.e. y we know that µz is supported on I0(y) = I0(z), and that
Eµ(f |I0)(z) is constant on I0(z). It follows that for µ-a.e. z, for every f ∈ F ,
the ergodic averages SNf converge µz-a.e. to a constant, and hence in L2 (since
f is bounded, and so are its averages). By Corollary 4.3.5, this implies that
(X,B, µz, T ) is an ergodic system, as claimed.

Our formulation of the ergodic decomposition theorem represents µ as an
integral of ergodic measures parametrized by y ∈ X (in an I-measurable way).
Sometimes the following formulation is given, in which PT (X) is given the σ-
algebra generated by the maps µ 7→ µ(E), E ∈ B; this coincides with the
Borel structure induced by the weak-* topology when X is given the structure
of a compact metric space. One can show that the set of ergodic measures is
measurable, for example because in the topological representation they are the
extreme points of a weak-* compact convex set.

Theorem 5.4.4 (Ergodic decomposition, second version). Let (X,B, µ, T ) be
a measure preserving system on a Borel space. Then there is a unique prob-
ability measure θ on PT (X) supported on the ergodic measure and such that
µ =
´
ν dθ(ν).
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Topological dynamical

systems

6.1 Topological dynamical systems

Ergodic theory has a close relative, in which instead of a measure being pre-
served, it is a topology.

De�nition 6.1.1. A topological dynamical system (t.d.s) is a pair (X,T )
where X is a compact metric space and T : X → X is continuous and onto.

Many of the examples we gave for measure preserving systems were also
topological dynamical systems in the sense above. It is sometimes useful to
allow compact or non-metrizable spaces but in this course we shall not encounter
them.

Example 6.1.2. 1. S1 = {z ∈ C : |z| = 1} with a rotation Rαx = e2πiαz.

2. Tx = mx mod 1 on R/Z (for m ∈ N).

3. X = AN or X = AZ, where A is a compact metric space and X is given
the product topology; and T is the shift map, (Tx)i = xi+1. Fo AN this
is a continuous map and for AZ it is a homeeomorphism.

We shall later see that there is a close link between topological and measure-
preserving systems: every topologicla system admits invariant measures, and
every reasonable m.p.s. is isomorphic to an invariant measure on a t.d.s. This
connection is useful because topological argument sometimes are useful in study-
ing measure preserving systems. This usually is not strictly necessary, and the
same results could be achieved using purely measure-theoretic means. However,
introducing a topology � and with it, a natural separable class of test functions,
namely, the continuous functions � often simpli�es arguments, and we shall not
hesitate to do this when it is is bene�cial to us.

42
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6.2 The weak-* topology on P(X)

In this section we prove that every topological system admits an invariant prob-
ability measures. We �rst recall some basic tools for studying measures on
compact spaces.

Let X be a compact metric space and letM(X) denote the linear space of
signed (�nite) Borel measures, and P(X) = P(X,B) ⊆M(X) the convex space
of Borel probability measures. Two measures µ, ν ∈ M(X) are equal if and
only if

´
fdµ =

´
fdν for all f ∈ C(X), and the maps µ 7→

´
fdµ, f ∈ C(X),

separate points.

De�nition 6.2.1. Let X be a compact metric space. The weak-* topology
on M(X) (or P(X)) is the weakest topology that make the maps µ 7→

´
f dµ

continuous for all f ∈ C(X). In particular,

µn → µ if and only if

ˆ
fdµn →

ˆ
fdµ for all f ∈ C(X)

Lemma 6.2.2. Let X be a compact metric space and F ⊆ C(X) a dense set of
funtions. Suppose that µn ∈ P(X) and lim

´
fdµn exists for all f ∈ F . Then

there exists µ ∈ P(X) such that µn → µ, that is,
´
fdµ = lim

´
fdµn for all

f ∈ C(X).

Proof. Let V = spanF . By assumption lim
´
fdµn exists for all f ∈ F , and

hence for all f ∈ V , since integrals and limits are �nitely additive. For f ∈ V
denote the limit by Λ(f). This is positive, linear, bounded function on V and
so extends to such a function on C(X) = V , which we denote also by Λ. By the
Riesz representation theorem there exists µ ∈ P(X) such that Λ(f) =

´
fdµ for

all f ∈ C(X). We now claim
´
fdµn →

´
fdµ for all f ∈ C(X). We already

know this for , and V is dense. Fixing any f ∈ C(X) let ε > 0 and g ∈ (V )
with ‖f − g‖∞ < ε. We get

|
ˆ
fdµn −

ˆ
fdµ| < |

ˆ
fdµn −

ˆ
gdµn|+ |

ˆ
gdµn −

ˆ
gdµ|+ |

ˆ
gdµ−

ˆ
fdµ|

< ε+ |
ˆ
gdµn −

ˆ
gdµ|+ ε

→ 2ε as n→∞

Since ε was arbitrary, we get
´
fdµn →

´
fdµ.

Proposition 6.2.3. The weak-* topology is metrizable and compact.

Proof sketch. Using the Stone-Weierstrass theorem shoose a dense sequence
{fi}∞i=1 ⊆ C(X). De�ne a metric on P(X) by

d(µ, ν) =

∞∑
i=1

2−i
∣∣∣∣ˆ fidµ−

ˆ
fidν

∣∣∣∣
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One shows that this metric is compatible with the topology. Next, if µn ∈ P(X)
is a sequence of measures, a diagonal argument can be used to show that there
is a subsequence µn(k) such that for every i, the limit lim

´
fidµn(k) exists. The

previous lemma now shows that µn(k) → µ for some measure µ. This proves
sequential compactness, which, by metrizability, is compactness.

Let (X,T ) be a topological dynamical system. Recall that the induced map

T = T̂ : C(X) → C(X) is an isometry of (C(X), ‖·‖∞) (Corollary 2.3.3 ). We

also get an induced map T =
̂̂
T : P(X)→ P(X) by µ 7→ µ ◦ T−1.

Lemma 6.2.4. Let (X,T ) be a topological dynamical system. Then the induced
map T : P(X)→ P(X) is continuous.

Proof. If µn → µ then for f ∈ C(X),ˆ
f dTµn =

ˆ
f ◦ T dµn →

ˆ
f ◦ T dµ =

ˆ
f dTµ

This shows that Tµn → Tµ, so T is continuous.

6.3 Existence of invariant measures

In a dynamical system (X,T ), for x ∈ X we write

µx,T =
1

N

N−1∑
n=0

δx,N

This is a probability measure and we note that

SNf(x) =

ˆ
fdµx,N

for all f ∈ C(X).

Proposition 6.3.1. Every topological dynamical system (X,T ) admits invari-
ant measures.

Proof. Let x ∈ X be an arbitrary initial point and let µN = µx,N be as above.
Passing to a subsequence N(k) → ∞ we can assume by compactness that
µN(k) → µ ∈ P(X). We must show that

´
f dµ =

´
f ◦ T dµ for all f ∈ C(X).

Now, ˆ
f dµ−

ˆ
f ◦ T dµ = lim

k→∞

ˆ
(f − f ◦ T ) dµN(l)

= lim
k→∞

1

N(k)

N(k)−1∑
n=0

ˆ
(f − f ◦ T )(Tnx)

= lim
k→∞

1

N(k)

(
f(TN(k)−1x)− f(x)

)
= 0
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because f is bounded.

There are a number of common variations of this proof. We could have
de�ned µN = 1

N

∑N−1
n=0 δTnxN (with the initial point xN varying with N), of

begun with an arbitrary measure µ and µN = 1
N

∑N−1
n=0 T

nµ. The proof would
then show that any accumulation point of µN is T -invariant.

We denote the space of T -invariant measures by PT (X).

Corollary 6.3.2. If (X,T ) is a topological dynamical system then PT (X) is
non-empty, compact and convex.

Proof. The last proposition shows that it is non-empty, and convexity is trivial.
For compactness, since it is a subset of the compact set P(X), we need only
show it is closed. We know that

PT (X) =
⋂

f∈C(X)

{µ ∈ P(X) :

ˆ
(f − Tf)dµ = 0}

Each of the sets in the intersection is the pre-image of 0 under the map µ 7→´
(f − Tf)dµ; since f − Tf is continuous this map is continuous and so PT (X)

is the intersection of closed sets, hence closed.

Corollary 6.3.3. Every topological dynamical system (X,T ) contains recurrent
points.

Proof. Choose any invariant measure µ ∈ PT (X) and apply Proposition 2.2.5
to the measure preserving system (X,B, µ, T ).

6.4 Generic points

The ergodic theorem is an a.e. statement relative to a given L1 function, and
such functions are de�ned a.e.; thus, it does not say anything about the distribu-
tion of single orbits. In a topological system, the continuous functions provide
a natural class of test functions by which to examine an orbit.

De�nition 6.4.1. Let (X,T ) be a topological dynamical system. A point
x ∈ X is generic for a Borel measure µ ∈ P(X) if it satis�es the conclusion of
the ergodic theorem for every continuous function, i.e.

SNf(x) =
1

N

N−1∑
n=0

Tnf(x)→
ˆ
f dµ for all f ∈ C(X) (6.1)

Thus, x is generic for µ if and only if µx,N → µ in the weak-* topology.
We have already seen that if x is generic for µ then µ is T -invariant. Also,
µTx,N , µx,N are clearly asymptotic, since ‖µTx,N − µx,N‖ ≤ 2/N in the total
variation distance. Thus x is generic for µ if and only if Tx is.
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Lemma 6.4.2. Let F ⊆ C(X) be a countable dense set. If SNf(x) converges
for every f ∈ F then x is generic for a measure µ ∈ PT (X) satisfying 6.1 for
every f ∈ C(X).

Proof. Immediate from Lemma 6.2.2 applied to (µx,N )∞N=1.

In general, a generic point need not generate an ergodic measure, nor even
be generic for any measure:

Example 6.4.3. Let X = {0, 1}N and let µ0 = δ000... and µ1 = δ111.... These
are ergodic measures for the shift σ. Now let x ∈ X be the point such that
xn = 0 for k2 ≤ n < (k + 1)2 if k is even, and xn = 1 for k2 ≤ n < (k + 1)2 if k
is odd. Thus

x = 111000001111111000000000111 . . .

We claim that x is generic for the non-ergodic measure µ = 1
2µ0 + 1

2µ1. It
su�ces to prove that for any `,

1

N

N−1∑
n=0

10`(T
nx) → 1

2

1

N

N−1∑
n=0

11`(T
nx) → 1

2

where 0`, 1` are the sets of points beginning with ` consecutive 0s and ` con-
secutive 1s, respectively. The proofs are similar so we show this for 0`. Notice
that 10`(T

nx) = 1 if k2 ≤ n < (k + 1)2 − ` and k is even, and 10`(T
nx) = 0

otherwise. Now, each N satis�es k2 ≤ N < (k + 2)2 for some even k. Then

N−1∑
n=0

10`(T
nx) =

k/2∑
j=1

((2j + 1)2 − `)− (2j)2) =

k/2∑
j=1

(4j + 1− `) = (
1

2
k2 +O(k))

Also N − k2 ≤ (k + 1)2 − k2 = O(k). Therefore SN10`(x)→ 1
2 as claimed.

Example 6.4.4. With (X,σ) as in the previous example, let yn = 0 if 2k ≤
n < 2k+1 for k even and yn = 1 otherwise. Then one can show that x is not
generic for any measure, ergodic or not.

Theorem 6.4.5. If µ is an ergodic measure in a topological dynamical system
(X,T ), then µ-a.e. x is generic for µ. More generally, if µ it T -invariant with
ergodic decomposition µ =

´
µxdµ(x), then µ-a.e. x is generic for measure µx.

Proof. Suppose that µ is ergodic. Fix F ⊆ C(X) countable and dense. By the
ergodic theorem, and using ergodicity, there exists a set X0 ⊆ X with µ(X0) = 1
and

SNf(x)→
ˆ
fdµ for x ∈ X0
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Since F is countable, for every x ∈ X0 this holds for all f ∈ F simultaneously.
By Lemma 6.4.2 applied to the measures µx,N , we conclude that µx,N → µ for
x ∈ X0, i.e., for µ-a.e. x.

In the non-ergodic case let µ =
´
µxdµ(x) denote the ergodic decomposition.

Then by the previous discussion, µx-a.e. y is generic for µx. Also, µx-a.e. y
satis�es µy = µx; thus, µx-a.e. y is generic for µy. Letting E denote the set of
y that are generic for µy, we have shown that µx(E) = 1 for µ-a.e. x, hence
µ(E) =

´
µx(E)dµ(x) = 1, as claimed.

De�nition 6.4.6. For a topological dynamical system (X,T ), write GT for the
set of generic points, GT (µ) for the set of points that are generic for a given
µ ∈ PT (X), and µx for the measure for which a point x ∈ GT is generic (de�ne
µx for x /∈ GT to be some �xed value, or leave it unde�ned).

Lemma 6.4.7. The set GT and the map x 7→ µx, de�ned on GT , are Borel
measurable.

Proof. Fix F ⊆ C(X) countable. Then GT is the set of points x such that
SNf(x) converges for all f ∈ F , which is measurable. Next, let π : P(X)→ RF
denote the map ν 7→ (

´
fdν)f∈F ∈ RF . This is a continuous embedding of P(X)

into RF and hence has continuous, and therefore measurable, inverse from its
image to P(X). For x ∈ GT the map x 7→ (limSNf(x))f∈F ∈ RF is measurable
and sends x to π(µx). Thus, x 7→ µx is measurable.

Let G ⊆ I denote the smallest σ-algebra with respect to which the setGT and
function x 7→ µx are measurable; it consists of invarint sets becuase obviously
µTx = µx. Since G is the pull-back of the Borel σ-algebra of the compact metric
space PT (X), and the latter is countably generated, so is the former: G = σ(G0)
where some countable family of sets G0 ⊆ G.

Corollary 6.4.8. Let µ ∈ PT (X). With the notation above, G coincides, mod
µ, with the σ-algebra I of invariant sets.

6.5 Unique ergodicity

When can the ergodic theorem be strengthened from a.e. point to every point?
Once again the question does not make sense for L1 functions, since these are
only de�ned a.e., but it makes sense for continuous functions.

De�nition 6.5.1. A topological system (X,T ) is uniquely ergodic if there is
only one invariant probability measure, which in this case is denoted µX .

Proposition 6.5.2. Let (X,T ) be a topological system and µ ∈ PT (X). The
following are equivalent.

1. Every point is generic for µ.

2. SNf →
´
f dµ uniformly, for every f ∈ C(X).



CHAPTER 6. TOPOLOGICAL DYNAMICAL SYSTEMS 48

3. (X,T ) is uniquely ergodic and µ is its invariant measure.

Proof. (1) implies (3): If ν 6= µ were another invariant measure there would be
points that are generic for it, contrary to (1).

(3) implies (2): Suppose (2) fails, so there is an f ∈ C(X) such that∥∥SNf 6 − ´ fdµ∥∥∞ → 0. Then there is some sequence xk ∈ X and integers

Nk → ∞ such that SNkf(xk) → c 6=
´
fdµ. Let ν be an accumulation point

of 1
Nk

∑Nk
n=1 δTnxk . This is a T -invariant measure and

´
fd ν = c so ν 6= µ,

contradicting (3).
(2) implies (1) is immediate.

Proposition 6.5.3. Let X = R/Z and α /∈ Q. The map Tαx = x+ α on X is
uniquely ergodic with invariant measure µ = Lebesgue.

We give two proofs.

Proof number 1. We know that µ is ergodic for Tα so a.e. x is generic. Fix one
such x. Let y ∈ X be any other point. then there is a β ∈ R such that y = Tβx.
For any function f ∈ C(X),

1

N

N−1∑
n=0

Tnα f(y) =
1

N

N−1∑
n=0

f(y + αn)

=
1

N

N−1∑
n=0

f(x+ αn + β)

=
1

N

N−1∑
n=0

(Tβf)(Tnαx)

→
ˆ
Tβf dµ =

ˆ
f dµ

Therefore every point is generic for µ and Tα is uniquely ergodic.

Our second proof is based on a more direct calculation that does not rely on
the ergodic theorem.

De�nition 6.5.4. A sequence (xk) in a compact metric space X equidistributes

for a measure µ if 1
N

∑N
n=1 δxn → µ weak-*.

Lemma 6.5.5 (Weyl's equidistribution criterion). A sequence (xk) ⊆ R/Z
equidistributes for Lebesgue measure µ if and only if for every m,

1

N

N−1∑
n=0

e2πimxn →
{

0 m = 0
1 m 6= 0

Proof. Let χm(t) = esπimt. The linear span of {χm}m∈Z is dense in C(R/Z) by
Fourier analysis so equidistribution of (xk) is equivalent to SNχm(x)→

´
χmdµ

for every m. This is what the lemma says.
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Proof number 2. Fix t ∈ R/Z and xk = t + αk. For m = 0 the limit in Weyl's
criterion is automatic so we only need to check m 6= 0. Then

1

N

N−1∑
n=0

e2πimxn =
1

N
e2πimt ·

N−1∑
n=0

(e2πimα)n =
1

N
e2πit · e

2πimαN − 1

e2πimα − 1
= 0

(note that α /∈ Q ensures that the denominator is not 0, otherwise the summa-
tion formula is invalid).

Corollary 6.5.6. For any open or closed set A ⊆ R/Z, for every x ∈ R/Z,
SN1A(x)→ Leb(A).

Proof. The boundary of an open or closed is countable and hence of Lebesgue
measure 0.

Example 6.5.7 (Benford's law). Many samples of numbers collected in the
real world exhibit the interesting feature that the most signi�cant digit is not
uniformly distributed. Rather, 1 is the most common digit, with frequency
approximately 0.30; the frequency of 2 is about 0.18; the frequency of 3 is
about 0.13; etc. More precisely, the frequency of the digit k is approximately
log10(1 + 1

d ).
We will show that a similar distribution of most signi�cant digits holds for

powers of b whenever b is not a rational power of 10. The main observation
is that the most signi�cant base-10 digit of x ∈ [1,∞) is determined by y =
log10 x mod 1, and is equal to k if y ∈ Ik = [log10 k, log10(k + 1)). Therefore,
the asymptotic frequency of k being the most signi�cant digits of bn is

lim
N→∞

1

N

N∑
n=1

1Ik(log10 b
n) = lim

N→∞

1

N

N∑
n=1

1Ik(n
ln b

ln 10
)

= Leb(Ik)

= Leb[log10 k, log10(k + 1)]

= log10(1 +
1

k
)

since this is just the frequency of visits of the orbit of 0 to [log10 k, log10(k+ 1)]
under the map t 7→ t + ln b/ ln 10 mod 1, and ln b/ ln 10 /∈ Q by assumption (it
would be rational if and only if b is a rational power of 10).

6.6 Topological models

Our last goal in this section is to show that most measure preserving systems are
isomorphic to an invariant measure on a topological dynamical system. We �rst
de�ne isomorphism. As is usually the case in measure theory, we are interested
in functions only up to changes on measure zero sets, and this is true also of
measure preserving maps. Thus two systems will be considered isomorphic if,
after discarding null sets, their points can beidenti�ed so as for the measures
and maps to agree. More precisely,
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De�nition 6.6.1. Two measure preserving systems (X,B, µ, T ) and (Y, C, ν, S)
are isomorphic if is a T -invariant measurable subsets X0 ⊆ X and an S-
invariant measurable subset Y0 ⊆ Y , and a function π : X0 → Y0 such that

1. π is 1-1 and onto and both π, π−1 are measuable,

2. π is measure preserving, that is, ν = πµ, or equivalently, µ(π−1C) = ν(C)
for all C ∈ C;

3. π is equivariant, i.e.
S ◦ π = π ◦ T

or, equivalently, the following diagram commutes:

X
T−→ X

↓ π ↓ π
Y

S−→ Y

Lemma 6.6.2. If (X,B, µ) is a measure space and S, T : X → X preserve µ
and agree outside a nullset E, then (X,B, µ, T ) and (X,B, µ, S) are isomorphic.

Proof. Let G denote the (semi-)group generated by S, T and the identity, and
let G−1E =

⋃
g∈G g

−1E. Then G−1E is a nullset which is S and T invariant

and contains E, so S, T are isomorphic to their restrictions to X \ G−1E, on
which they agree. Hence they are isomorphic.

Now, isomorphism between dynamical systems implies isomorphism, in the
obvious sense, of the underlying measurable and probability spaces, and also of
the associated Lp spaces (by an easy generalization of the Koopman operator).
Not every probability space is isomorphic to a compact metric space with a
Borel probability measure; for example, in the latter L2 is separable, which in
general need not hold. Thus, if we want a measure preserving system to be
isomorphic to a topological one, we must avoid obstructions coming from the
underlying measure spaces.

De�nition 6.6.3. A measurable space (X,B) is a standard Botel space if
there exists a complete, separable metric on X for which B is the σ-algebra of
Borel sets.

Fact 6.6.4. (X,B) is a strandard Borel space if and only if there is a compact
metric on X whose Borel sets coincide withB.

Lemma 6.6.5. Let (X,B, µ), (Y, C, ν) be probability spaces with (X,B) and
(Y, C) standard Borel spaces. Let π : X → Y be a measuable map which preserves
the measures in the sense that µ(π−1C) = ν(C) for all C ∈ C, and suppose that
π is injective. Then there exists a measurable X0 ⊆ X whose image Y0 = πX0

is measurable, and µ(X0) = ν(Y0) = 1.
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Proof. We may assume that X,Y are equipped with compact metrics. By
Egorov's theorem, for every ε > 0 there exists Xε ∈ B with µ(Xε) > 1 − ε
and π|Xε : Xε → Y continuous. Let Yε = πXε; then Yε is compact and hence
measurable. Let X0 =

⋃∞
n=1X1/n, since X1/n ⊆ X0 we have µ(X0) ≥ 1 − 1/n

for all n, hence µ(X0) = 1. Also, πX0 =
⋃∞
n=1 πXn so Y0 = πX0 is measurable.

Since ν(Y0) = µ(π−1X0) ≥ µ(X0) = 1 we have ν(Y0) = 1.

Theorem 6.6.6. Let (X,B, µ, T ) be a measure preserving system whose under-
lying measure space is standard Borel. Then it is isomoprhic to an invariant
measure on a topological dynamical system.

Proof. For simplicity we give the proof when T is invertible. We may by as-
sumption assume that X is a compact metric space; but of course, T is not
continuous.

De�ne π : X → XZ by π(x) = (Tnx)n∈Z. Endow XZ with the product
topology, which is compactly metrizable, and let C denote the Borel sets. Then
π is Borel measurable, since its composition with each cordinate projection gives
one of the measurable maps Tn. If we denote the shift map on XZ by S, then
S is continuous, and πT = Sπ. De�ne a Borel probability measure ν on XZ by
ν(E) = µ(π−1E). Then

ν(S−1E) = µ(π−1(S−1E)) = µ(T−1(π−1E)) = µ(π−1E) = ν(E)

so (XZ, C, ν, S) is a measure preserving system. Thus, π is almost an isomor-
phism;l it fails to be one only because it is not onto.

To correct this we apply the previous lemma. This gives sets X0 ⊆ X and
Y0 ⊆ XZ of full measure, such that Y0 = πX0. The sets are not invariant
but we can replace them with X1 =

⋂
n∈Z T

nX0 and Y1 =
⋂
n∈Z S

nY0; clearly
Y1 = πX1, both are measurable, both have full measure, and they are now
invariant. This completes the proof.



Chapter 7

Eigenvalues, group rotations

and isometries

We have seen that 1 is an eigenvalue for the Koopman operator of a measure
preserving system, , since the constant functions are eigenvactors for it. . We
also saw that ergodicity is equivalent to simplicity of this eigenvalue. In this
section we explore the signi�cance of other eigenvalues, and their connections
with algebraic and isometric factors of the system,

7.1 Eigenvalues of the Koopman operator

In this chapter and the next, all function spaces are complex, and L2(µ) is
equipped with the inner product 〈f, g〉 =

´
fgdµ.

De�nition 7.1.1. Let (X,B, µ, T ) be a measure preserving system. λ is an
eigenvalue of T if it is an eigenvalue for the associated Koopman operator,
that is, if there is an 0 6= f ∈ L2(µ,B) such that Tf = λf . Such f is called an
eigenvector for the eigenvalue λ, and the set of all eigenvectors for λ (together
with 0) forms a closed linear subspace called the eigenspace of λ. We denote
the set of eigenvalues by Σ(T ).

Eigenvalues and eigenvectors have some elementary properties:

1. Eigenvalues have modulus one. Indeed, the Koopman operator preserves
norms and inner products, hence for an eigenvector v,

‖v‖ = ‖Tv‖ = ‖λv‖ = |λ| ‖v‖

2. Similarly, if u, v are eigenvectors for α, β respectively, and α 6= β, then
u ⊥ v: indeed, since αβ = αβ−1 6= 1

〈u, v〉 = 〈Tu, Tv〉 = 〈αu, βv〉 = αβ 〈u, v〉

52
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3. In particular, if L2 is separable (e.g. if (X,B) is stnadard Borel), then
there are at most countably many eigenvalues.

4. If T is ergodic, and f is an eigenfunction for λ, then |f | is a.s. constant.
Indeed,

T |f | = |Tf | = |λf | = |f |

hence |f | is invariant and by ergodicity it is a.s. constant. By convention
one usually takes eigenfunctions to have modulus one.

5. If T is ergodic then each eigenvalue has multiplicity one, that is, the space
of eigenvectors is one-dimensional. Indeed, if f, g are eigenvectors for λ
then f/g : X → S1 is invariant, because

T (f/g) = Tf/Tg = λf/λg = f/g

and hence f/g is a constant function of modulus one, so f = αg for some
constant with |α| = 1.

6. The set Σ(T ) of eigenvalues of the Koopman operator is a subgroup of
the multiplicative group S1 = {z ∈ C : |z| = 1}. Indeed, if f, g are
eigenfunctions for α, β then f · g is an eigenvalue for αβ, and f is an
eigenvalue for α = α−1. Indeed, these functions are in L2 because they
are bounded, and

T (fg) = Tf · Tg = αf · βg = αβ · fg

and similarly Tf = α · f = α−1f .

Example 7.1.2. Let X = {0, . . . , n− 1} and Tx = x+ 1 mod n. Then f(x) =
e2πix/n is an eigenfunction with eigenvalue e2πi/n.

Example 7.1.3. Let (S1,B, µ,Rα) be a circle rotation. Then e2πiα is an eigen-
value, because for the identity map 2 f(z) = z,

f(Tx) = f(e2παz) = e2πiαz = e2πiαf(x)

Furthermore, β is an eigenvalue if and only if β = αn for some n ∈ Z. Indeed,
{zn}n∈Z are eigenvectors with eigenvalues {αn}n∈Z, and they are dense in L2

(since they are dense in C(S1). Since an eigenvalue for β /∈ {αn} would be
perpendicular to all zn, it must be 0.

7.2 Group rotations

Eigenvectors and eigenvalues are algebraic features of the Koopman operator.
But, as we shall see, their existence is explained by a structurel property of the
dynamical system in question. More precisely, we shall see that the presence of
nontrivial eigenvalues implies that the dynamical system has a compact group
translation as a factor.
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De�nition 7.2.1. A compact metric group (c.m.g.) is a group X together
with a compact metric on X, such that the group operations are continuous: if
xn → x and yn → y in X then xnyn → xy and x−1

n → x−1.

For instance, S1 with the metric induced from C and the multiplication
opraiton is a compact metric group. More generally, the group of orthogonal
matrices with the operator norm is a compact group. Real or complex vector
spaces and groups of matrices are metric groups but generally not compact.

De�nition 7.2.2. A character of a compact metric group X is a continuous
group homomorphism ϕ : X → S1, i.e. ϕ(xy) = ϕ(x)ϕ(y). The characters form

a group under pointwise multiplication. The group of characters is denoted X̂,
and called the dual group.

Any non-trivial continuous group homomorphism ϕ : X → (C,×) must have
image in S1, because if ϕ(x) 6= 0 then ϕ(xn)=ϕ(x)n and ϕ(x−n) = ϕ(x)−n, so
unless |ϕ(x)| = 1 we conclude that ϕ is unbounded, contradicting continuity
and compactness of X.

It is not obvious that there exist non-trivial characters, but in fact there are
plenty:

Theorem 7.2.3 (Pontryagin/Peter-Weyl). Let X be an abelian compact metric

group Then the characters separate points and their linear span of X̂ is dense
in C(X).

We also need

Theorem 7.2.4 (Haar). A compact metric group X admits a unique Borel
probability measure µX which is invariant under translations, i.e. for every
E ∈ B and g ∈ G, µ(E) = µ(gE) = µ(Eg).

We do not prove thes theorems here.

De�nition 7.2.5. By a group rotation we will mean a dynamical system of
the form (X,B, µ, T ) where X is an abelian compact metric group, B the Borel
σ-algebra, µ the Haar measure, and T is a translation, i.e. Tx = gx for a �xed
element g ∈ X.

Note that translation maps preserve Haar measure, because µ◦T−1 is again
an invariant probability measure, and thus, by uniquenes of the Haar measure,
equal to µ. It follows that a group translation is a m.p.s.

We now return to the Koopman operator:

Proposition 7.2.6. Let (X,B, µ, T ) be group rotation with T translating by g.

Then every character ϕ ∈ X̂ is an eigenfunction for T with eigenvalue ϕ(g),
and the eigenfunctions span L2(µ,B).

Proof. Let ϕ be a character. Then

Tϕ(x) = ϕ(Tx) = ϕ(gx) = ϕ(g)ϕ(x)

Thus ϕ is an eigenfunction for T . The second part follows from the Peter-Weyl
theorem.
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7.3 Kronnecker factors and the Halmos-von Neu-
mann theorem

Our goal is to show that nontrivial eigenvalues for the Koopman operator arise
from group rotations �hiding� in the dynamics. We �rst introduce the notion of
a factor.

De�nition 7.3.1. Let (X,B, µ, T ) and (Y, C, ν, S) be measure preserving sys-
tems. We say that Y is a factor of X if there is a measurable map π : X → Y
de�ned µ-a.e., such that µ◦π−1 = ν and π◦T = S◦π, i.e. the following diagram
commutes:

X
T−→ X

↓ π ↓ π
Y

S−→ Y

π is called a factor map.

Example 7.3.2. If we start with two measure preserving systems (X,B, µ, T )
and (Y, C, ν, S) and form the product system X × Y with the product measure
µ × ν and the action R(x, y) = (Tx, Sy), then the marginal maps (x, y) 7→ x
and (x, y) 7→ y de�ne factor maps from the product system to X,Y resp.

Example 7.3.3. Suppose that (X,B, µ, T ) is an invertible m.p.s. and there is
a partition of X into n sets X0, X1, . . . , Xn−1 ∈ B such that T permutes them
cyclically: TXi = Xi+1 mod n. Then we can de�ne π : X → {0, . . . , n − 1}
with f(x) = i i� x ∈ Xi, and taking Si = i + 1 mod 1, for x ∈ Xi we have
π(Tx) = i + 1 mod 1 by the de�ning property of the partition. Noticing that
µ(Xi) = µ(T−1Xi+!), so all Xi have the same mass, which must be 1/n. Taking
normalized counting measure ν on {0, . . . , n− 1}, we �nd that

µ(π−1(E)) = µ(
⋃
i∈I

π−1(i) = µ(
⋃
i∈E

Xi) =
1

n
|E| = ν(E)

Thus π is a factor map.
Conversely, suppose that π : X → {0, . . . , n − 1} is a factor map; then

Xi = π−1(i) is a partition as above.

Proposition 7.3.4. In an ergodic m.p.s. (X,B, µ, T ) admits a nontrivial group
rotation as a factor then it admits nontrivial eigenfunctions. Furthermore, every
eivenfunction of Y lifts to one of X, with the same eigenvalue.

Proof. Let (Y, C, ν, S) be a non-trivial group factor of X by the map π : X →
Y . Let ϕ be a non-trival eigenfunction character of Y (obtained from some
character), with eigenvalue λ. Let ψ(x) = ϕ(πx). Since ϕ is bounded, so if ψ,
so it is in L2, and

ψ(Tx) = ϕ(π(Tx)) = ϕ(Sπ(x)) = λϕ(πx) = λψ(x)

so ψ is an eigenfunction with eigenvalue λ.



CHAPTER 7. EIGENVALUES, GROUP ROTATIONS AND ISOMETRIES56

Proposition 7.3.5. In an ergodic m.p.s. (X,B, µ, T ), if f ∈ L2(µ,B) is an
eigenfunction with eigenvalue λ = e2πiα, then X admits a group rotation factor.
Speci�cally, letting λ = e2πiα,

1. If α /∈ Q then X factors to S1 with the rotation Rα.

2. If α = k/m ∈ Q in reduced form, then X factors to {0, . . . ,m − 1} with
addition byt 1 mod m.

Proof. The eigenfunction relation implies that

f(Tx) = λf(x) = Rαf(x)

Assume �rst α /∈ Q, then this proves equivariance. Let ν normalized denote
Lebesgue measure on S1; we must show that ν = µ ◦ ϕ−1. To see this, de�ne
another measure ν′ on S1 by ν′(E) = µ(f−1E). This is an invariant measure
for Rα because of the factor relation:

ν′(R−1
α E) = µ(f−1R−1

α E) = µ(((Rαf)−1E) = µ((fT )−1E) = µ(T−1(f−1E)) = µ(f−1E) = ν(E)

But (S1, Rα) is uniquely ergodic, so ν′ = ν.
Now suppose that α = k/m. Then f(Tx) = Rαf(x) is still true but it will no

longer be true that ν = µ ◦ ϕ−1. Instead we argue as follows. Let ν′ = µ ◦ ϕ−1.
Then by de�nition (S1, ν′, Rα) is a factor of X. This implies that X is ergodic:
if R−1

α E = E then
T−1ϕ−1E = ϕ−1R−1

α E = ϕ−1E

hence by ergodicity ofT , µ(ϕ−1E) = 0 or 1. But then ν(E) = µ(ϕ−1E) = 0 or
1, so (S1, ν′, Rα) is ergodic.

Now, each Rα-orbit is a coset of the grou Y ⊆ S1 of m-th roots of unity
in S1, and the partition of S1 into cosets of Y is countably generated (it is
essentially the same as the partition of the arc {e2πit : t ∈ [0, 1/m)} into
points). Thus ν′ is supported on one coset z0Y . Let ψ(x) = z−1

0 ϕ(x). Then ψ
is an eigenfunction with eigenvalue λ (it is a scalar multiple of ϕ) and ψ : X → Y
takes µ to counting ν′◦Rz0 which is (by unique ergodicity of cyclic permutations)
normalized counting measure on Y . This is the desired factor map (it is clearly
the isomorphic to addiiton of 1 on {0, . . . ,m− 1}).

Combining the last two propositions we have:

Corollary 7.3.6. A m.p.s. admits nontrivial eigenfunctions if and only if it
admits a nontrivial group rotation factor.

We will now take a closer look at systems that are isomorphic to group
rotations. Let T∞ = (S1)N, which is a compact metrizable group with the
product topology. Let m be the in�nite product of Lebesgue measure, which
is invariant under translations in T∞ and hence equal to Haar measure. Given
α = (α1, α2, . . .) ∈ T∞ let Lα : T∞ → T∞ as usual be the translation map.
Note that

Lnαx = αnx
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Lemma 7.3.7. The orbit closure Gα of 0 ∈ T∞ under Lα (that is, the closure
of {αn : n ∈ N}) is the closed subgroup generated by α.

Proof. It is clear that it is contained in the group in question, is closed, contains
α, and is a semigroup. The latter is because it is the closure of the semigroup
{αn}n∈N; explicitly, if x, y ∈ Gα then x = limαni and y = lim 0mj , so

xy = (limαmj )(limαni) limαmi+ni ∈ Gα

Also, if we knew that g−1 ∈ Gα we would have

x−1 = (limαmj )−1 ∈ limα−mj = lim(α−1)mj

since Gα is closed under multiplication, (α−1)mj ∈ Gα, and since Gα is closed,
the last line shows that x−1 ∈ Gα.

It remains to show that α−1 ∈ Gα. For this choose ni → ∞ such that αnj

converges, to some z. We can assume that ni+1 > ni − 1 (since nj → ∞), and
by passing to a subsequence, we can also assume that αni+1−ni−1 converges, to
some β ∈ Gα. But:

αβ = α limαni+1−ni−1 = α limαni+1 limα−ni = zz−1 = 1

sp α−1 = β ∈ Gα, as claimed.

Lemma 7.3.8. Let α ∈ T∞ and Gα be as above. Let mα be the Haar mea-
sure on Gα, equivalently, the unique Lα-invariant measure. Then in the m.p.s.
(Gα,m,Lα), the spectrum Σ(Lα) = 〈α1, α2, . . .〉 ⊆ S1 is the discrete group gen-
erated by the coordinates αi of α.

Proof. Let πn : T∞ → S1 denote the n-th coordinate projection. Clearly
πn(Lαx) = αnxn = αnπn(x), so the functions πn are eigenfunctions of (Gα,mα, Lα).
Let A denote the C-algebra generated by {πn}. This is an algebra of continuous
functions that separate points in T∞ and certainly in Gα, so they are dense in
L2(mα). Since this algebra consists precisely of the eigenfunctions with eigen-
values in 〈α1, α2, . . .〉 we are done.

Proposition 7.3.9. Let (X,B, µ, T ) be an ergodic measure preserving system
on a standard Borel space. Let Σ(T ) = {α1, α2, . . .} and α = (α1, α2, . . .) ∈ T∞.
Then

1. (Gα,mα, Lα) is a factor of X.

2. Every eigenfunction of T arises as a lift of an eigenfunction of (Gα,mα, Lα).

3. If L2(µ) is spanned by eigenfunctions, then the factor map X → Gα is an
isomorphism.

4. If τ : X → Y is a factor map to a group rotation (Y, S, ν), then π factors
through Gα; that is, writing π : X → Gα for the factor map, there exists
a factor map τ ′ : Gα → Y such that τ = τ ′π.
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Proof. Note that Σ is countable because eigenvectors of distinct eigenvalues are
orthogonal, and L2(µ,B) is separable by standardness of the space.

Let fi be an eigenvector for αi and de�ne F : X → T∞ by

F (x) = (f1(x), f2(x), . . .)

It is immediate that F (Tx) = LαF (x).
Let ν = µ ◦ F−1. This is an Lα-invariant and ergodic measure on T∞

(compare with the same property of ν′ in Proposition 7.3.5).
Let y0 ∈ supp ν be a point with dense orbit in in supp ν (which exists

by ergodicity). Consider the map Ly−1x 7→ y−1
0 x, which commutes with Lα

(because T∞ is abelian), and note that Ly−1
0

maps the Lα-orbit of y0 to the

Lα-orbit of 1, and so it maps the orbit closure of y0 to Gα. Writing η = ν ◦L−1

y−1
0

it follows that η is Lα-invariant and supp η = Ly−1
0

supp ν = Gα.

Since η is invariant under αn for every n, it is invariant under every element
of Gα, so by uniqueness of Haar measure, η = mα. Also it is easy to check that
the map π : x 7→ Ly−1F (x) is equivariant with Lα. Thus π is a factor map from
X to (Gα,mα, Rα).

Next, suppose that the eigenfunctions span L2(µ). Since each eigenfunction
is lifted by π from one of the eigenfunctions of Gα, we �nd that L2(π−1Bα) =
L2(µ), where Bα is the Borel algebra of Gα. It follows that π is 1-1 a.e. and by
standardness it is an isomorphism (this fact is beyond the scope of the course,
but is not too hard).

Finally suppose τ : X → Y with (Y, ν, S) a group rotation. The eigenvectors
are dense in L2(ν), and we have an isomorphism σ : Y → Gβ where β =
(β1, β2, . . .) enumerates Σ(S). Now, each eigenvector f of (Gβ , S) lifts to one of
X and since the multiplicity is 1, this is the eigenvector for its eigenvalue, up
to multiplication by a constant phase. Thus the coordinates of α include those
of β. Let τ ′ : Gα → T∞ denote projection to the coordinates corresponding to
eigenvalues of S; then the map τ ′ ◦ F = τ . The claim follows.

De�nition 7.3.10. An ergodic measure preserving system has discrete spec-
trum if L2 is spanned by eigenfunctions.

Corollary 7.3.11. Discrete spectrum systems are isomorphic if and only if the
induced unitary operators are unitarily equivalent.

Proof. This follows from the theorem above and the fact that two diagonal-
izable unitary operators are unitarily equivalent if and only if they have the
same eigenvalues (counted with multiplicities), and ergodicity implies that all
eigenvalues are simple.

Part (3) of the theorem above shows that every measure preserving system
has a maximal isometric factor. This factor is called the Kronecker factor.
The factor is canonical, although the factor map is not � one can always post-
compose it with a translation of the group.



CHAPTER 7. EIGENVALUES, GROUP ROTATIONS AND ISOMETRIES59

We emphasize that in general it is false that unitary equivalence implies
ergodic-theoretic isomorphism. The easiest example to state is that the prod-
uct measures (1/2, 1/2)Z and (1/3, 1/3, 1/3)Z with the shift map have unitarily
isomorphic induced actions on L2, but they are not isomorphic.

7.4 Isometries and group rotations

De�nition 7.4.1. A m.p.s. (X,B, µ, T ) is isometric if there exists a compact
metric on the phase space for which B is the Borel σ-algebra and T acs as an
isometry.

Group rotations are isometric: if d is a metric on a compact abelian group
rotation (X,Rg) and µ is the Haar measure, we can de�ne a new quivalent
metric

d̃(x, y) =

ˆ
d(gx, gy)dµ(g)

(we leave the veri�cation as an exercise). Writing δ(g) = d(gx, gy), we have

d̃(hx, hy) =

ˆ
d(ghx, ghy)dµ(g)

=

ˆ
d(hgx, hgy)dµ(g)

=

ˆ
δ ◦Rh(g)dµ(g)

=

ˆ
δ(g)dµ(g)

= d̃(x, y)

Thus x 7→ hx acts as an isometry.
The converse is, surprisingly, true as well, at least under the mild assumption

that the isometry admits a dense orbit.

Proposition 7.4.2. Let (Y, d) be a compact metric space and S : Y → Y an
isometry with a dense orbit. Then there is a compact metric group G and g ∈ G
and a homeomorphism π : Y → G such that Lgπ = πS. Furthermore if ν is an
invariant measure on Y then it is ergodic and πν is Haar measure on G.

Proof. Consider the group Γ of isometries of Y with the sup metric,

d(γ, γ′) = sup
y∈Y

d(γ(y), γ′(y))

Then (Γ, d) is a complete metric space, and note that it is right invariant:
d(γ ◦ δ, γ ◦ δ) = d(γ, γ′).

Let y0 ∈ Y have dense orbit and set Y0 = {Sny0}n∈Z. If the orbit is �nite,
Y = Y0 is a �nite set permuted cyclically by S, so the statement is trivial.
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Otherwise y ∈ Y0 uniquely determines n such that Sny0 = y and we can de�ne
π : Y0 → Γ by y 7→ Sn ∈ Γ for this n.

We claim that π is an isometry. Fix y, y′ ∈ Y0, so y = Sny0 and y′ = Sn
′
y0,

so
d(πy, πy′) = sup

z∈Y
d(Snz, Sn

′
z)

Given z ∈ Y there is a sequence nk →∞ such that Snky0 → z. But then

d(Snz, Sn
′
z) = d(Sn(limSnky0), Sn

′
(limSnky0))

= lim d(SnSnky0, S
n′Snky0)

= lim d(Snk(Sny0), Snk(Sn
′
y0))

= lim d(Sny0, S
n′y0)

= d(Sny0, S
n′y0)

= d(y, y′)

Thus d(πy, πy′) = d(y, y′) and π is an isometry Y0 ↪→ Γ. Furthermore, for
y = Sny0 ∈ Y0,

π(Sy) == π(SSny) = Sn+1 = LSS
n = LSπ(y)

It follows that π extends uniquely to an isometry with Y ↪→ Γ also satisfying
π(Sy) = S(πy). The image π(Y0) is compact, being the continuous image of the
compact set Y . Since π(Y0) = {Sn}n∈Z and this is a group its closure is also a
group G.

Finally, suppose ν is an invariant measure on Y . Then m = πν is LS
invariant on G. Since it is invariant under LS it is invariant under {LnS}n∈Z,
and this is a dense set of elements in G. Thus m it is invariant under every
translation in G, and there is only one such measure up to normalization: Haar
measure. The same argument applies to every ergodic components of m (w.r.t.
LS) and shows that the ergodic components are also Haar measure. Thus m is
LS-ergodic and since π is an isomorphism, (Y, ν, S) is ergodic.

Corollary 7.4.3. Let (X,B, µ, T ) be an ergodic m.p.s. Then X is weak mixing
if and only if it admits only trivial isometric systems as factors.



Chapter 8

Weak mixing

Group rotations de�ne a class of dynamical systems characterized by the pres-
ence of many su�ciently many eigenfunctions. We now turn to study the oppo-
site property, de�ned in the next section. The remainder of the chapter is then
devoted to exploring numerous other properties which are equivalent to weak
mixing and shed new light on the phenomenon.

8.1 Weak mixing

Weak mixing, which we shall see is intermediate between these two, is a prop-
erty wth many equivalent formulations, which make it resemble both ergodicity
and mixing (and some altogether di�erent). For the de�nition we choose the
following.

De�nition 8.1.1. A m.p.s. (X,B, µ, T ) is weak mixing if the only eigenfunc-
tions are the constant ones.

We can right away give two equivalent de�nitions. Since the constant func-
tions form a one-dimensional subspace of L2 consisting of eigenfunctions of
eigenvalue 1, we �nd that

A system is weak mixing if and only if 1 is the only eigenvalue,
and it is simple (the space of corresponding eigenfunctions is one-
dimensional).

Also, since weak mixing implies ergodicity, and for ergodic m.p.s.'s the existence
of non-trivial eigenfunctions is the same as the existence of non-trivial isometric
factors, we �nd that

A system is weak mixing i� it is ergodic and has no non-trivial
isometric factors.

Proposition 8.1.2. Mixing implies weak mixing, and weak mixing implies er-
godicity.

61
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Proof. Let (X,B, µ, T ) denote the system in quesiton.
Weak mixing implies that there are no non-constant eigenfunctions, in par-

tiular no non-constant invariant functions, hence it implies ergodicity.
Now suppose that T is mixing, so

´
f ·Tngdµ→

´
fdµ·

´
gdµ for all f, g ∈ L2.

Suppose that h is an eigenfunction with eigenvalue λ. Then taking f = h and
g = h the above becomes

ˆ
f · Tngd =

ˆ
h · λnhdµ = λn ‖h‖2 →

ˆ
f · gdµ = ‖h‖2

We found that λn ‖h‖2 → ‖h‖2. Since ‖h‖ 6= 0 this implies λn → 1, which is
possilble only if λ = 1.

Neither implication in the proposition can be reversed. Here is an example
showing that ergodicity does not imply weak mixing:

Example 8.1.3. Suppose that T : S1 → S1 is the irrational rotation z 7→ λz.
Then T is ergodic with respect to Lebesgue measure. But F (x, y) = xy is a
non-trivial invariant function for T × T : indeed,

((T × T )F )(x, y) = F (Tx, Ty) = Tf · Ty = λxλy = xy = F (x, y)

since λλ = 1. Thus T is not weak mixing.

Examples exist of weakly mixing but not mixing m.p.s. but they are harder
to construct. We may return to this later if time permits.

8.2 Double ergodicity

We have seen that weak mixing implies ergodicity, but is a stronger condition.
It turns out to be equivalent to ergodicity of the cartesian product.

Theorem 8.2.1. Let (X,B, µ, T ) be an invertible m.p.s. on a standard Borel
space. Then it is weak mixing if and only if (X × X,B × B, µ × µ, T × T ) is
ergodic.

Recall that for an ergodic m.p.s., weak mixing is the same as admitting only
trivial isometric factors. Thus one direction of the proof is provided by the
following:

Proposition 8.2.2. If a m.p.s. X admits a non-trivial isometric factor then
X ×X is not ergodic.

Proof. First, observe that if Y is a nontrivial isometric system then it is not weak
mixing, because, by de�nition, the metric is a nontrivial invariant function on
Y × Y . Now, if Y is an isometric factor of X then X ×X factors onto Y × Y ,
and so, since the latter is not ergodic, neither is the former (since Y ×Y admits
a non-trivial invariant set, and this lifts, via the factor map, to an invariant set
in X ×X).
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For the converse direction we must show that if X is ergodic but X ×X is
not ergodic, then X admits a non-trivial isometric factors.

Recall that if (X,B, µ) is a probability space then there is a pseudo-metric
on B de�ned by

d(A,B) = µ(A∆B) = ‖1A − 1B‖1
Identifying sets that di�er in measure 0 dives a metric on equivalence classes,
and the resulting space may be identi�ed with the space of 0-1 valued functions
in L1, which is the same as the set of indicator functions. This is an isometry
and since the latter space is closed in L1, it is complete.

Now suppose that X is not weak mixing and let A ⊆ X×X be a non-trivial
invariant set. Consider the map X → L1 given by x→ 1Ax where

Ax = {y ∈ X : (x, y) ∈ A}

The map is measurable, we use the fact that the Borel structure of the unit ball
in L1 in the norm and weak topologies coincide (this fact is left as an exercise).
Then we only need to check that

x 7→
ˆ

1Ax(y)g(y) dµ(y)

is measurable for every g ∈ L∞. For �xed g, this clearly holds when A is a
product set or a union of product sets, and the general case follows from the
monotone class theorem.

Now, notice that

TAx = {Ty : (x, y) ∈ A}
= {y : (x, T−1y) ∈ A}
= {y : (x, T−1y) ∈ T−1A}
= {y : (Tx, y) ∈ A}
= ATx

so π : x→ Ax commutes with the action of T on X and L1. Finally, the action
of T on L1 is an isometry. Therefore we have proved:

Claim 8.2.3. If T is not weak mixing then there is a complete metric space (Y, d),
and isometry T : Y → Y and a Borel map π : X → Y such that Tπ = πT .

Let ν = πµ, the image measure; it is preserved. Thus (Y, ν, T ) is almost the
desired factor, except that the space Y is not compact (and there is another
technicality we will mention later). To �x these problems we need a few general
facts.

De�nition 8.2.4. Let (Y, d) be a complete metric space. A subset Z ⊆ Y is
called totally bounded if for every ε there is a �nite set Zε ⊆ Y such that
Z ⊆

⋃
z∈Zε Bε(z).

Lemma 8.2.5. Let Z ⊆ Y as above. Then Z is compact if and only if Z is
totally bounded.
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Proof. This is left as an exercise.

Lemma 8.2.6. Let (Y, d) be a complete separable metric space, S : Y → Y
an isometry and µ an invariant and ergodic Borel probability measure. Then
suppµ is compact.

Proof. Let C = suppµ. This is a closed set and is clearly invariant so we only
need to show that it is compact. For this it is enough to show that it is totally
bounded.

Choose a µ-typical point y. By the ergodic theorem, its orbit is dense in C.
Furthermore since S is an isometry, Br(S

ny) = SnBr(y). Now let z ∈ C. There
is an n with d(z, Sny) < r so Br(T

ny) ⊆ B2r(z), hence

µ(Br(y)) ≤ µ(B2r(z))

This is true for every r.
Now, let {zi} be a maximal set of r-separated points in C. the set must

be �nite, because Br/2(zi) are disjoint balls of mass uniformly bounded below.
Therefore B2r(zi) is a �nite cover of C, and since r was arbitrary, C is totally
bounded.

Let ν be, as before, the image of µ under the map π : X → L1. Then supp ν
is compact and we can replace X by π−1(supp ν), which has full measure. We
are done.

8.3 Mixing-in-density

Ergodicity and mixing are properties which measure how strongly the present
and future of a dynamical system interact. Mixing means that the present
and future are asymptotically independent: µ(A ∩ T−nB) → µ(A)µ(B). To
highlight the similarity between ergodicity and mixing, we begin by showing
that ergodicity can is characterized as by same limit

´
fTngdµ→

´
fdµ
´
gdµ,

but with convergence understood in the Cesaro sense.

Lemma 8.3.1. For a m.p.s. (Y, C, ν, s) the following are equivalent:

1. Y is ergodic.

2. 1
N

∑N
n=0 µ(A ∩ T−nB)→ µ(A)µ(B) for every A,B ∈ C.

3. 1
N

∑N
n=0

´
f · Tng →

´
fdµ ·

´
gdµ for every f, g ∈ L2(ν).

Proof. The equivalence of the last two conditions is standard via approximation
of L2 functions by step functions. We prove equivalence of the �rst two.

If (2) holds then for A,B ∈ C of positive measure we have µ(A ∩ T−nB) =´
1A · Tn1Bdµ > 0 in�nitely often. This gives ergodicity.
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Conversely, if the system is ergodic as in (1), then by the mean ergodic

theorem, SNg = 1
N

∑N−1
n=0 T

ng →
´
g in L2 for any g ∈ L2. So by continuity of

the inner product,

lim
N→∞

N−1∑
n=0

µ(A ∩ T−nB) = lim
N→∞

1

N

N∑
n=0

(ˆ
1A · Tn1Bdµ

)
= lim

N→∞
〈1A, SN1B〉

=

〈
1A,

ˆ
1Bdµ

〉
= 〈1A, µ(B)〉

µ(A)µ(B)

which is (2).

Returning to weak mixing, we introduce a notion of convergence intermediate
between Cesaro convergence and the standard convergence.

De�nition 8.3.2. For a subset I ⊆ N we de�ne the upper density to be

d(I) = lim sup
N→∞

|I ∩ {1, . . . , N}|
N

A sequence an ∈ R converges in density to a ∈ R, denoted an
D−→ a or

D-lim an = a, if

d({n : |an − a| > ε}) = 0 for all ε > 0

Compare this to the usual notion of convergence, where we require the set
above to be �nite rather than 0-density. Since the union of �nitely many sets of
zero density has zero density, this notion of limit has the usual properties (with
the exception that a subsequence may not have the same limit). One can also
show the following:

Lemma 8.3.3. For a bounded sequence an, the following are equivalent:

1. an
D−→ a.

2. 1
N

∑N
n=0 |an − a| = 0.

3. 1
N

∑N
n=0(an − a)2 = 0.

4. There is a subset I = {n1 < n2 < . . .} ⊆ N with d(I) = 1 and limk→∞ ank =
a.

We leave the proof of the lemma as an exercise.

Theorem 8.3.4. For a m.p.s. (X,B, µ, T ) the following are equivalent:
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1. X is weak mixing.

2. 1
N

∑N−1
n=0

∣∣´ f · Tngdµ− ´ fdµ ´ gdµ∣∣→ 0 for all f, g ∈ L2(µ).

3. 1
N

∑N−1
n=0 |µ(A ∩ T−nB)− µ(A)µ(B)| → 0 for every A,B ∈ B.

4. µ(A ∩ T−nB)
D−→ µ(A)µ(B) for every A,B ∈ B.

Proof. Since |µ(A ∩ T−nB) − µ(A)µ(B)| ≤ 1, the equivalence of (3) and (4) is
Lemma 8.3.3. The equivalence of (2) and (3) is standard be approximating L2

functions by simple functions and using Cauchy-Schwartz. So we have to prove
that (1) ⇐⇒ (2).

We may suppose that X is ergodic, since otherwise (1) fails trivially and (2)
fails already without absolute values by the lemma. Then for f, g ∈ L∞(µ) we
know from the lemma that

1

N

N−1∑
n=0

ˆ
f · Tng →

ˆ
f

ˆ
g (8.1)

Suppose that X is weak mixing. Let f ′ = f(x)f(y) ∈ L2(µ× µ) and de�ne
g′ ∈ L2(µ× µ) similarly. By ergodicity of X ×X

1

N

N−1∑
n=0

ˆ
f ′ · (T × T )ng′dµ× µ→

ˆ
f ′
ˆ
g′

but ˆ
f ′(T × T )ng′dµ× µ =

ˆ ˆ
f(x)f(y)g(Tnx)g(Tny) dµ(x)dµ(y)

= (

ˆ
f · Tngdµ)2

and ˆ
f ′dµ× µ ·

ˆ
g′dµ× µ = (

ˆ
fdµ)2(

ˆ
gdµ)2

Thus we have proved:

1

N

N−1∑
n=0

(

ˆ
f · Tngdµ)2 → (

ˆ
f

ˆ
g)2 (8.2)

Combining this with 1
N

∑N−1
n=0

´
f · Tng →

´
f
´
g, we �nd that

1

N

N−1∑
n=0

(

ˆ
f · Tngdµ− (

ˆ
f

ˆ
g))2 → 0 (8.3)

and since the terms are bounded, this implies (2).
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In the opposite direction, assume (4), which is equivalent to (2). We must
prove that X ×X is ergodic, or equivalently, that for every F,G ∈ L2(µ× ν),

1

N

N−1∑
n=0

ˆ
F · TnGdµ× ν →

ˆ
Fdµ× ν ·

ˆ
Gdµ× ν

By approximation it is enough to prove this when F (x1, x2) = f1(x1)f2(x2) and
G(x1, x2) = g1(x1)g2(x2). Furthermore we may assume that f1, f2, g1, g2 are
simple, and even indicator functions 1A, 1A′ , 1B , 1B′ . Thus we want to prove
that for A,A′, B,B′,

1

N

N−1∑
n=0

µ(A ∩ T−nB)µ(A ∩ T−nB′)→ µ(A)µ(B)µ(A′)µ(B′)

But µ(A∩ T−nB)→ µ(A)µ(B) in density and µ(A′ ∩ T−nB′)→ µ(A′)µ(B′) in
density, so the same is true for their product; and hence the averages converge
as desired.

8.4 A multiplier property

Weak mixing was de�ned by the property of X × X, but it turns out that it
can be characterized in terms of the behavior of products of X with arbitrary
ergodic systems.

Proposition 8.4.1. (X,B, µ, T ) is weak mixing if and only if X ×Y is ergodic
for every ergodic system (Y, C, ν, S).

Proof. One direction is trivial: if X × Y is ergodic whenever Y is ergodic then
this is true in particular for the 1-point system. Then X × Y ∼= X so X is
ergodic. It then follows taking Y = X that X × X is ergodic, so X is weak
mixing.

In the opposite direction we must prove that for every F,G ∈ L2(µ× ν),

1

N

N−1∑
n=0

ˆ
F · (T × S)nGdµ× ν →

ˆ
Fdµ× ν

ˆ
Gdµ× ν

As before it is enough to prove this when F (x1, x2) = f1(x1)f2(x2) andG(x1, x2) =
g1(x1)g2(x2), and it reduces to

1

N

N−1∑
n=0

ˆ
f1(x)Tnf2(x)dµ(x)·

ˆ
g2(x)Sng2(x)dν(x)→

ˆ
f1dµ

ˆ
f2dµ

ˆ
g1dν

ˆ
g2dν

Splitting L2(µ) into constant functions and their orthogonal complement (func-
tions of integral 0), it is enough to prove this for f1 in each of these spaces. If
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f1 is constant then
´
f1(x)Tnf2(x)dµ(x) =

´
f1dµ

´
f2dν and the claim follows

from ergodicity of S. On the other hand if
´
f1dµ = 0 we have(

1

N

N−1∑
n=0

ˆ
f1(x)Tnf2(x)dµ(x) ·

ˆ
g2(x)Sng2(x)dν(x)

)2

≤ 1

N

N−1∑
n=0

(ˆ
f1(x)Tnf2(x)dµ(x)

)2

· 1

N

N−1∑
n=0

(ˆ
g2(x)Sng2(x)dν(x)

)2

but

1

N

N−1∑
n=0

(ˆ
f1(x)Tnf2(x)dµ(x)

)2

=≤ 1

N

N−1∑
n=0

(ˆ
f1(x)Tnf2(x)dµ(x)−

ˆ
f1

ˆ
f2

)2

→ 0

by weak mixing of X and we are done.

Corollary 8.4.2. If X is weak mixing so is X ×X and X ×X × . . .×X.

Proof. For any ergodic Y , (X×X)×Y = X× (X×Y ). Since X×Y is ergodic
so is X × (X × Y ). The general claim follows in the same way.

More generally,

Corollary 8.4.3. If X1, X2, . . . are weak mixing so are X1 ×X2 × . . ..

Also,

Corollary 8.4.4. If (X,B, µ, T ) is weak mixing then so is Tn for all n ∈ N (if
T is invertible, also negative n).

Proof. Since T × T is ergodic if and only if T−1 × T−1 is ergodic, weak mixing
of T and T−1 are equivalent, so we only need to consider n > 0.

First we show that T weak mixing implies that Tm is ergodic. Otherwise,
let f ∈ L2 be a Tm invariant and non-constant function. Consider the system
Y = {0, . . . ,m − 1} and S(y) = y + 1 mod m with uniform measure. Let
F (x, i) = f(Tm−ix). Then

F (Tx, Si) = f(Tm+1−(i+1)x) = f(Tm−ix) = F (x, i)

so F is T × S invariant and non-constant. Hence T × S is not ergodic; but this
contradicts the weak mixing property of T .

Applying the argument above to T × T , which is itself weak mixing, we
�nd that (T × T )m is ergodic, equivalently Tm × Tm is ergodic, so Tm is weak
mixing.
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8.5 (*) Spectral measures

Our characterization of weak mixing is, in the end, purely a Hilbert-space state-
ment. Thus one should be able to prove the existence of eigenfunctions without
use of the underlying dynamical system. This can be done with the help of the
spectral theorem. Let us �rst give a brief review of the version we will use.

Let us begin with an example of a unitary operator. Let µ be a probability
measure on the circle S1 and let M : L2(µ) → L2(µ) be given by (Mf)(z) =
zf(z). Note that U preserves norm, since |zf(z)| = |f(z)| for z ∈ S1 and hence
µ-a.e. z; it is invertible since the inverse is given by multiplication by z.

The spectral theorem says that any unitary operator can be represented in
this way on any invariant subspace for which it has an cyclic vector.

Theorem 8.5.1 (Spectral theorem for unitary operators). Let U : H → H be
a unitary operator and v ∈ H a unit vector such that {Unv}∞n=−∞ = H. Then
there is a probability measure µv ∈ P(S1) and a unitary operator V : L2(µ)→ H
such that U = VMV −1, where M : L2(µ) → L2(µ) is as above. Furthermore
V (1) = v.

We give the main idea of the proof. The measure µv is characterized by the
statement because its Fourier transform µ̂v : Z→ R is given by

µ̂v(n) =

ˆ
zn dµv = 〈Mn1, 1〉L2(µv) = 〈Unv, v〉H

Reversing this argument, in order to construct µv one starts with the sequence
an = 〈Un1, 1〉H . This sequence is positive de�nite in the sense that for any
sequence λi ∈ C and any n,

∑n
i,j=1 λiλjai−j ≥ 0:

∞∑
i,j=1

λiλjai−j =

n∑
i,j=−n

λiλj
〈
U i−jv, v

〉
H

=

n∑
i,j=−n

〈
U iλiv, U

jλjv
〉
H

=

〈
n∑

i=−n
U iλiv,

n∑
j=−n

U jλjv

〉
H

=

∥∥∥∥∥
n∑

i=−n
U iλiv

∥∥∥∥∥
2

2

≥ 0

Therefore, by a theorem of Hergolz (also Bochner) an is the Fourier transform

of a probability measure on S1 (note that a0 == ‖v‖2 = 1).

One �rst de�nes V on complex polynomials p(z) =
∑d
n=0 bnz

n by V p =∑d
n=0 bnU

nv. One can check that this preserves inner products; it su�ces to
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check for monomials, and indeed

〈V (bzm), V (czn)〉 = bc 〈Umv, Unv〉 = bc·am−n = bc

ˆ
zm−ndµv =

ˆ
(bzm)(czn)dµv = 〈bzm, bzn〉L2(µv)

Since polynomials are dense in L2(µ) it remains to extend V to measurable
functions. The technical details of carrying this out can be found in many
textbooks.

Lemma 8.5.2. Let U : H → H be unitary and v a cyclic unit vector for U with
spectral measure µ. Then α ∈ Σ(U) if and only if µv(α) > 0.

Proof. If α is an atom of µv let f = 1{α}. This is a non-zero vector in L2(µv),
and Mf(z) = zf(z) = αf(z). Hence α ∈ Σ(M) and by the spectral theorem
α ∈ Σ(U).

Conversely, suppose that µv({α}) = 0. Consider the operator Uα(w) =
αUw, which can easily be seen to be unitary. Clearly w is an eigenfunction
with eigenvalue α if and only if Uαw = w. Thus it su�ces for us to prove that
1
N

∑N−1
n=0 U

n
αw → 0 for all w, and, since v is cyclic and the averaging operator is

linear and continuous, it is enough to check this for v. Transferring the problem
to (S1, µv,M), we must show that 1

N

∑N−1
n=0 α

nzn → 0 in L2(µv). We have

1

N

N−1∑
n=0

αnzn =
1

N

(αz)N − 1

αz − 1

This converges to 0 at every point z 6= α, hence µv-a.e., and it is bounded.
Hence by bounded convergence, it tends to 0 in L2(µv), as required.

Proposition 8.5.3. Let U,H, v, µv be as above. If µv is continuous (has no
atoms), then

1

N

N−1∑
n=0

|(w,Unw′)| → 0

for every w,w′ ∈ Hv.

Proof. Using the fact that w,w′ can be approximated in L2 by linear combina-
tions of {Unv}, it is enough to prove this for w,w′ ∈ {Unv}. Since the statement
we are trying to prove is formally unchanged if we replace w by U±1w or w′ by
U±1w′, we may assume that w = w′ = v. Also, we may square the summand, as
we have seen this does not a�ect the convergence to 0 of the averages. Passing
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to the spectral setting, we have

1

N

N−1∑
n=0

|(v, Unv)|2 =
1

N

N−1∑
n=0

∣∣∣∣ˆ zndµv

∣∣∣∣2

=
1

N

N−1∑
n=0

(ˆ
zndµv ·

ˆ
zndµv

)

=
1

N

N−1∑
n=0

(ˆ ˆ
znyndµv(y)dµv(z)

)
=

ˆ ˆ (
1

N
· (zy)N − 1

zy − 1

)
dµv × µv(z, y)

The integrand is bounded by 1 and tends pointwise to 0 o� the diagonal {y = z},
which has µv × µv-measure 0, since µv is non-atomic. Therefore by bounded
convergence, the expression tends to 0.

Corollary 8.5.4. If (X,B, µ, T ) is ergodic then it is weak mixing if and only
if µf is continuous (has no atoms) for every f ⊥ 1 (equivalently, the maximal
spectral type is non-atomic except for an atom at 1), if and only if Σ(T ) = {1}.

Proof. Suppose for f ⊥ 1 the spectral measure µf is continuous. By the last

proposition, 1
N

∑N−1
n=0 |

´
f · Tnf dµ| → 0. For general f, g we can write f =

f ′ +
´
f , g = g′ +

´
g, where f ′, g′ ⊥ 1. Substituting f = f ′ +

´
f into

1

N

N−1∑
n=0

|
ˆ
f · Tnf dµ− (

ˆ
f dµ)(

ˆ
gdµ)|

we obtain the expression

1

N

N−1∑
n=0

|
ˆ
f ′ · Tng′ dµ|

which by assumption→ 0. This was one of our characterizations of weak mixing.
Conversely suppose T is weak mixing. Then it has no eigenfunctions except

1 (this was the trivial direction of the eigenfunction characterization), so if f ⊥ 1
also span{Unf} ⊥ 1 and so, since on this subspace T has no eigenfunctions, µf
is continuous.

We already know that weak mixing implies Σ(T ) = {1}. In the other di-
rection, if T is not weak mixing, we just saw that there is some f ⊥ 1 with
µf (α) > 0 for some α, and by the previous lemma, α ∈ Σ(T ).

In a certain sense, we can now �split� the dynamics of a non-weak-mixing
system into an isometric part, and a weak mixing part:
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Corollary 8.5.5. Let (X,B,µ, T ) be ergodic. Then L2(µ) = U ⊕ V , where
U = L2(µ, E) for E ⊆ B the Kronecker factor, and V is an invariant subspace

such that T |V is a weak-mixing in the sense that 1
N

∑N−1
n=0 |

´
f · Tng dµ| → 0

for g ∈ V .

One should note that, in general, the subspace V in the corollary does not
correspond to a factor in the dynamical sense.

An important consequence is the following:

Theorem 8.5.6. Let (X,B, µ, T ) and (Y, C, ν, S) be ergodic measure preserving
systems. Then X × Y is ergodic if and only if Σ(T ) ∩ Σ(S) = {1}.

Proof. Let Z = X×Y , R = T×S, θ = µ×ν. If α 6= 1 is a common eigenvalue of
T, S with eigenfunctions f, g, then h(x, y) = g(y) · f(x) is a non-trivial invariant
function, since

h(R(z, y)) = g(Sy) · f(Tx) = αg(y)αf(x) = h(x, y)

and so Z is not ergodic.
Conversely, write L2(µ) = Vwm ⊕ Vpp, where T |Vpp as in the previous corol-

lary, where T |Vpp has no eigenvalues, and decompose L2(ν) = Wwm ⊕ Wpp

similarly. We must show that

1

N

N−1∑
n=0

ˆ
h ·Rnhdθ → (

ˆ
h)2

for every h ∈ L2(θ) and it su�ces to check this for h = fg, f ∈ L2(µ), g ∈ L2(ν),
since the span of these is dense in L2. Then

´
hRnhdθ =

´
fTnfdµ ·

´
gSngdν.

Also, since we can write f = fwm + fpp and g = gwm + gpp for fwm ∈ Vwm etc.
we can expand the expression above, and obtain a sum of terms of the form

1

N

N−1∑
n=0

ˆ
h·Rnhdθ → (

ˆ
h)2 =

∑
i,j,s,t∈{wm,pp}

(
1

N

N−1∑
n=0

(

ˆ
fiT

nfjdµ)(

ˆ
gsS

ngtdν)

)
(8.4)

Consider the terms in parentheses; they are all bounded independently of n. So
if i, j = wm we can bound∣∣∣∣∣ 1

N

N−1∑
n=0

(

ˆ
fiT

nfjdµ)(

ˆ
gsS

ngtdν)

∣∣∣∣∣ ≤ C · 1

N

N−1∑
n=0

|
ˆ
fiT

nfjdµ| → 0

and similarly if s, t = wm. Also if i = wm, s = pp, then Tnfj = αnfj for some
α, and f j ⊥ fi. Henceˆ

fiT
nfjdµ = αn

ˆ
fifjdµ = α

〈
fi, f j

〉
= 0

Thus in 8.4 we only need to consider the case i, j, s, t = pp. In this case we can
expand each of the functions as a series in normalized, distinct eigenfunctions:
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fpp =
∑
ϕk and gpp =

∑
ψk where Tϕk = αkϕk and Sψk = βkψk. We assume

ϕ0 = const and ψ0 = const. Expanding again using linearity, we must consider
terms of the form

1

N

N−1∑
n=0

(

ˆ
ϕiT

nϕjdµ)(

ˆ
ψsS

nψtdν) =
1

N

N−1∑
n=0

(αnj

ˆ
ϕiϕjdµ)(βnt

ˆ
ψsψtdν)

Now, the �rst integral is 0 unless ϕj = ϕi and the second is 0 unless ψt = ψs.

If this is the case we have, writing ci,s = ‖ϕj‖2 ‖ψj‖2

=
1

N

N−1∑
n=0

αnj β
n
t ci,s =

{
ci,s αj = βt

ci,s
1
N

(αβ)N−1
β−1 otherwise

−−−−→
N→∞

{
ci,s αj = βt
0 otherwise

Since Σ(T ) ∩ Σ(S) = {1} the limit is thus 0 except for i = j = s = t = 0. In
the latter case, c0,0 =

´
ϕ2

0dµ
´
ψ2

0dν = (
´
f)2(
´
g)2, so this was the limit we

wanted.



Chapter 9

Shannon Entropy

Intuitively, a fair dice is �more random� than a fair coin (it has 6 equally likely
outcomes, versus 2 for the coin), which in turn is �more random� than a biased
coin (which has two outcomes but they are not equally likely). Entropy, which
will occupy us in one form or another for the next few chapters, is a numerical
quantity associated to a random variable, quantifying the amount of randomness
inherrent in it. In this chapter we de�ne entropy and establish some of its basic
properties, as well as some applications.

9.1 Motivation: Optimal compression

Claude Shannon introduction entropy in his landmark 1948 paper on informa-
tion theory, where it appears naturally in de�ning the complexity of a signal and
the capacity of a transmission channel. To motivate the de�nition we follow a
similar course, namely, we examine the problem of source coding. In this prob-
lem we are given a �signal�, modeled by a random variable whose outcome is in
some �nite set (which we denote usually by Σ), and we want to represent the
signal a �nite binary sequence (or more generally, a sequence over some other
alphabet), in such a way as to minimize the average length of the encoding
word, and to be able to recover the original signal. We begin with some basic
notation.

De�nition 9.1.1. Let Σ be a �nite set of symbols.
A word of length n over Σ is a �nite sequence a = a1 . . . an ∈ Σn, whose

length we denote by |a| = n.
The set of all �nite words (including the empty word) is denoted Σ∗ =⋃∞

n=0 Σn.

The subword of σ ∈ Σn from index i to index j > i is the word σji =
σiσi+1 . . . σj .

If a, b are words then ab is their concatenation.

74
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De�nition 9.1.2. A code on a �nite set Σ is a map c : Σ→ {0, 1}∗. We write
c∗ : Σ∗ → {0, 1}∗ for the repeated applicaiton of c, given by c∗(σ1, . . . , σn) =
c(σ1) . . . c(σn) (we usually drop the superscript and just write c(σ1 . . . σn)).

One could just as well consider conding using other alphabets than {0, 1}
but there is little reason to do so. The main consequence of the choice of a
2-symbol alphabet will be that we shall take our logarithms to be in base 2.

It is obviously desirable that a code be injective, i.e. for c(σ) to determine
σ. But if one is also interested in repeated coding of sequences of elements of
Σ, one should ask slightly more:

De�nition 9.1.3. A code c is uniquely decodable if c∗ is inective.

Injectivity of c is not enough to ensure that it is uniquely decodable. For
example if Σ = {σ1, σ2} and if c(σ1) = 0 and c(σ2) = 00, then c is injective, but
00 could be the image of either σ2 or of σ1σ1.

There are various ways to construct uniquely decodable codes. For example
we can �mark� the end of each codeword with some sequence which appears
nowhere else. But there is cleaner way to do it.

De�nition 9.1.4. A code c is a Pre�x code if σ 6= σ′ implies that c(σ) is not
a pre�x of c(σ′) or vice versa.

Lemma 9.1.5. Pre�x codes are uniquely decodable.

Proof. If u = c(σ1) . . . c(σm) = c(σ′1) . . . c(σ′m′), suppose that for some i we have
c(σi) 6= c(σ′i). Deleting the pre�x c∗(σ1 . . . σi) = c∗(σ′1 . . . σ

′
i) from u, we get

c(σi)c(σi+1) . . . c(σm) = c(σ′i)c(σ
′
i+1) . . . c(σ′m′). If |c(σi)| = |c(σ′i)| then both

c(σi) and c(σ′i) would constitute the same pre�x of u, and would be equal,
contrary to assumption. But if |c(σi)| > |c(σ′i)| then σ′i is a pre�x of σi, and
vice versa, so the code is not a pre�x code.

The following result gives a condition that ensures that a pre�x code can be
constructed using words of given lengths `i. It also shows that this is the same
condition that ensures existence of a uniquely decodable code, so using pre�x
codes is optimal, at least in terms of the lengths of the code words.

Theorem 9.1.6. Generalized Kraft inequality Let `1, . . . , `n ≥ 1. Then the
following are equivalent:

1.
∑

2−`i ≤ 1.

2. There is a pre�x code with lengths `i.

3. There is a uniquely decodable code with lengths `i.

Proof. (2) =⇒ (3) was the previous lemma.
(1) =⇒ (2): Let L = max `i and order `1 ≤ `2 ≤ . . . ≤ `n = L.
It is useful to identify

⋃
i≤L{0, 1}i with the full binary tree of height L, so

each vertex has two children, one connected to the vertex by an edge marked
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0 and the other by an edge marked 1. Each vertex v in the tree is identi�ed
with the labels along the edges of the path connecting the root to v; the root
corresponds to the empty word and the leaves (at distance L from the root)
correspond to words of length L.

We de�ne codewords c(i) = ai by induction. Assume we have de�ned ai, i <
k with |ai| = `i. Let

Ai = {aib : b ∈ {0, 1}L−`i}

Thus Ai is the set of leaves descended from ai, or equivalently, the set of words
of length L of which ai is a pre�x. We have |Ai| = 2L−`i . The total number of
leaves descended form a1, . . . , ak−1 is

|
⋃
i<k

Ai| ≤
∑
i<k

|Ai| =
∑
i<k

2L−`i < 2L

The strict inequality is because
∑

2−`i ≤ 1, and the sum above includes at least
one term less than the full sum.

Let a ∈ ΣL \
⋃
Ai and a

k = a1 . . . a`k the length-`k pre�x of a. For i < k,
ai if ai is a pre�x of ak then, since `i ≤ `k, a

k is a child of ai and so a ∈ Ai, a
contradiction. If ak is a pre�x of ai then since `i ≤ `k we have ai = ak and the
same arrive at the same contradiction. Therefore a1, . . . , ak is a pre�x code.

(3) =⇒ (1): Suppose c is uniquely decodable. Fix m. Then

(
∑

2−`i)m =
∑

(i1...im)∈Σm

2−
∑m
j=1 `ij =

∑
(i1,...,im)∈Σm

2−|c(i1,...,im)|

divide the codewords according to length:

=

Lm∑
`=1

∑
σ∈Σ≤m : c(σ)=`

2−` ≤
Lm∑
`=1

2−`2` = Lm

taking m-th roots and m→∞, this gives (1) .

De�nition 9.1.7. Let ξ be a random variable with values in Σ (i.e., P(ξ ∈ Σ) =
1), and distribution p ∈ P(Σ). The mean coding length of ξ w.r.t. a code c
is E|c(ξ)| =

∑
σ∈Σ p(σ)|c(σ)|.

Now suppose we are given a �nie set Σ and random variable ξ on Σ with dis-
tribution p ∈ P(Σ), and we want to �nd a uniquely decodable code of optimal
average coding length. By the previous theorem, de�ning such a code c amounts
to determining the lenghs `σ = |c(σ)| so that they satisfy

∑
2−`σ ≤ 1. Thus,

our problem is:

Problem: Find {`σ}σ∈Σ ∈ NΣ which minimize
∑
pσ`σ subject

to
∑

2−`σ ≤ 1.

The �rst way to solve this problem is via lagrange multipliers. Replace the
integer variable `σ by continuous real xσ. By adding a �dummy variables�
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corresponding to signals which occur with probability zero, we can replace the
condition

∑
2−xσ ≤ 1 with

∑
2−xσ = 1. We then have the lagrangian

L(x, λ) =
∑

pσxσ − λ
(∑

2−xσ − 1
)

Di�erentiating by xσ and by λ and setting to zero, we get

pσ − λ2−xσ ln 2 = 0∑
2−xσ = 1

Summing the �rst equation over σ, and using
∑
pσ = 1 and the second equation,

we �nd
λ = 1/ ln 2

so
xσ = − log pσ

and the �expected coding length� at the critical point is

−
∑

pσ log pσ

This motivates the following de�nition:

De�nition 9.1.8. The (Shannon) entropy of a probability vector p = (p1, . . . , pn)
is

H(p1, . . . , pn) = −
∑

pi log pi

The entropy of a random variable ξ on a �nite set Σ is the distribution of the
probability vector pσ = P(ξ = σ), i.e.

H(ξ) = −
∑
σ∈Σ

pσ log pσ

By convention the logarithm is taken in base 2 and 0 log 0 = 0. In�nite
vectors (or variables with in�nite range) can have in�nite entropy but we will
not discus these here.

Shannon's fundamental result on source coding is the following:

Theorem 9.1.9. If c is a uniquely decodable code for a discrete random variable
ξ, then the expected coding length is ≥ H(ξ), and equality is achieved if and only
if pσ = 2−`σ where `σ = |c(σ)|. Furthermore, there exists a pre�x code code for
ξ with expected coding length H(ξ) + 1.

Proof. We have essentially proved the �rst statement in the calculus exercise
above, which showed how the expression −

∑
pi log pi naturally comes about.

Now that we have identi�ed it wecan give another, more conceptual proof. Sup-
pose that

∑
2−`σ = 1 (as explained before it we have≤ we can obtain equality by

adding lengths associated to probability zero outcomes, which does not change
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the entropy). Set qσ = log 1/`σ, so
∑
qσ = 1. The function log t is concave

(log′′ t = −1/t2 < 0), so

H(ξ)−
∑

pσ`σ = −
∑

pσ log pσ + pσ log qσ

=
∑

pσ log
qσ
pσ

≤ log
∑

pσ
qσ
pσ

= log 1

= 0

which shows that the mean coding length is never less than the entropy.
Finally, to build an almost-optimal code, choose a pre�x code with |c(σ)| =

`σ = d− log pσe, which is possible since∑
2−`σ ≤

∑
2− log pσ =

∑
pσ = 1

Since `σ ≤ − log pσ + 1, the expected coding length is∑
pσ`σ ≤ H(p) + 1

We have thus shown that, up to one extra bit, the optimal coding rate
H(ξ) can be achieved.

9.2 Shannon entropy

In the previous section we discussed �nite-valued random variables. We shift
our perspective now, temporarily, to study the entropy of partitions. Let us
brie�y explain the connection. A random variable ξ de�ned on a probability
space (Ω,F , P ), and taking values in a �nite set A, gives rise to a partition of
Ω into level sets (which are measurable, since ξ is):

Aξ = {ξ−1(a) : a ∈ A}.

The correpsondence between ξ and Aξ is 1-1 if we regard Aξ as a labeled collec-
tion of sets with ξ−1(a) bearing the label a. Otherwise, Aξ does not determine
the values of ξ, but only its level sets (for example, any strictly increasing func-
tion on R de�nes the partition into points, so many functions de�ne the same
partition). But it is easy to see that if Aζ = Aξ then ζ is a.s. a function of
ξ and vice versa, so the �distribution� of a random variable, if we do not care
about its values, is captured entirely by the masses the measure assigns to the
atoms of the partition; in other words, Aξ determines the probability vector
pξ = (P(ξ = a))a∈A up to permutation of coordinates.
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De�nition 9.2.1. The entropy of a probability measure µ with respect to a
partition A is the non-negative number

H(µ,A) = −
∑
A∈A

µ(A) logµ(A)

This is just the entropy of the associated probability vector (µ(A))A∈A, and
if ξ is a random variable then H(ξ) = Hµ(Aξ).

Example 9.2.2. For p = (p, 1−p) the entropyH(p) = −p log p−(1−p) log(1−p)
depends on the single variable p. It is an exercise in calculus to verify that h(·) is
strictly concave on [0, 1], increasing on [0, 1/2] and decreasing on [1/2, 1], with a
unique maximum value h(1/2) = 1 and minimal values h(0) = h(1) = 0. Thus,
the entropy is minimal when all the mass is on one atom of A, and maximal
when it is uniformly distributed.

Properties of entropy

(E1) 0 ≤ H(µ,A) ≤ log |A|, and furthermore

(a) H(µ,A) = 0 if and only if µ(A) = 1 for some A ∈ A.
(b) H(µ,A) = log |A| if and only if µ is uniform on A, that is,

µ(A) = 1/|A| for A ∈ A.
(E2) H(·,A) is concave: for probability measures µ, ν on and 0 < α < 1,

H(αµ+ (1− α)ν,A) ≥ αH(µ,A) + (1− α)H(ν,A)

with equality if and only if µ(A) = ν(A) for all A ∈ A.

Proof. We �rst prove (E2). The function f(t) = −t log t is strictly concave
(because f ′′(t) = 1/t2), so by Jensen's inequality,

H(αµ+ (1− α)ν,A) =
∑
A∈A

f(αµ(A) + (1− α)ν(A))

≥
∑
A∈A

(αf(µ(A)) + (1− α)f(ν(A)))

= αH(µ,A) + (1− α)H(ν,A)

with equality if and only if µ(A) = ν(A) for all A ∈ A.
The left inequality of (E1) is trivial. For the right one consider the function

H(p) = −
∑
A∈A pA log pA on the simplex ∆ of probability vectors p = (pA)A∈A.

By (E2) this function is strictly concave, so its minima are attainged at its ex-
treme points; these are the vectors p which are concentrated on one coordinate,
and there the entropy is zero. It remains to show that the (unique) maximum
is attained at p∗ = (1/|A|, . . . , 1/|A|), since H(p∗) = log |A|. Existence and
uniqueness of the maximal point p∗ follows because ∆ is compact and con-
vex and H(·) is strictly concave. Since H(·) is invariant under permutation
of variables, the maximizing point p∗ must also be invariant under coordinate
permutations, and hence all its coordinates are equal. Since it is a probability
vector they are are equal to 1/|A|.
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For a set B of positive measure, let µB denote the conditional probability mea-
sure µB(C) = µ(B ∩C)/µ(B). Note that for a partition B we have the identity

µ =
∑
B∈B

µ(B) · µB (9.1)

De�nition 9.2.3. The conditional entropy of µ and A given another parti-
tion B = {Bi} is de�ned by

H(µ,A|B) =
∑
B∈B

µ(B)H(µB ,A)

This is just the average over B ∈ B of the entropy of A with respect to the
conditional measure on B.

De�nition 9.2.4. Let A,B be partitions of the same space.

1. The join of A,B is the partition

A ∨ B = {A ∩B : A ∈ A , B ∈ B}

2. A re�nes B (up to measure 0) if every A ∈ A is contained in some B ∈ B
(up to measure 0).

3. A,B are independent if µ(A ∩B) = µ(A)µ(B) for A ∈ A, B ∈ B.

Properties of entropy (continued)

(E2') H(·,A|B) is concave:

(E3) H(µ,A ∨ B) = H(µ,A) +H(µ,B|A)

(E4) H(µ,A∨B) ≥ H(µ,A) with equality if and only if A re�nes B up to
µ-measure 0.

(E5) H(µ,A ∨ B) ≤ H(µ,A) + H(µ,B) with equality if and only if A,B
are independent. Equivalently, Hµ(B|A) ≤ H(B) with equality if and
only if A,B are independent.

Proof. For (E3), by algebraic manipulation,

H(µ,A ∨ B) =

= −
∑

A∈A,B∈B
µ(A ∩B) logµ(A ∩B)

=
∑
A∈A

µ(A)
∑
B∈B

µ(A ∩B)

µ(A)

(
− log

µ(A ∩B)

µ(A)
− logµ(A)

)
= −

∑
A∈A

µ(A) logµ(A)
∑
B∈B

µA(B)−
∑
A∈A

µ(A)
∑
B∈B

µA(B) logµA(B)

= H(µ,A) +H(µ,B|A)
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The inequality in (E4) follows from (E3) since H(µ,B|A) ≥ 0; there is equality
if and only if H(µA,B) = 0 for all A ∈ A with µ(A) > 0. By (E1), this occurs
precisely when, on each A ∈ A with µ(A) 6= 0, the measure µA is supported on
a single atom of B, which means that A re�nes B up to measure 0.

For (E2'), let µ = αη + (1 − α)θ. For B ∈ B let βB = αη(B)
µ(B) . Then

(1− βB) = (1−α)θ(B)
µ(B) and

µB = βBηB + (1− βB)θB

hence

H(µ,A|B) =

=
∑
B∈B

µ(B)H(µB ,B) by de�nition

≥
∑
B∈B

µ(B) (βBH(ηB ,A) + (1− βB)H(θB ,A)) by concavity (E2)

=
∑
B∈B

(αη(B) ·H(ηB ,A) + (1− α)θ(B) ·H(θB ,A))

= αH(η,A|B) + (1− α)H(θ,A|B)

Finally, (E5) follows from (E1) an (E2). First,

H(µ,B|A) =
∑
B∈B

µ(B)H(µB ,A) ≤ H(
∑
B∈B

µ(B)µB ,A) = H(µ,A)

It is clear that if A,B are independent there is equality. To see this is the only
way it occurs, one again uses strict convexity of H(p), which shows that the
independent case is the unique maximizer.

There are a few generalizations of these properties which are useful:

Properties of entropy (continued):

1. ([E3']) H(A,B|C) = H(B|C) +H(A|B ∨ C).
(E5') If C re�nes B then H(A|C) ≤ H(A|B), with equality if and only if

B = C.

Proof. For (E3') expand both sides using (E3). For (E5') use (E3'), noting that
C = C ∨ B since C re�nes B.

We have already remarked that discrete random variables correspond to parti-
tions of the underlying probability space, and the entropy of the random variable
is that of the corresponding partition. Let us now say a few words about how
relations and operations on partitions translate to random variables.

If ξ : X → I and ζ : X → J are random variables corresponding partitions
Aξ,Aζ of X, respectively, then the pair (ξ, ζ) is an I×J-valued random variable
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corresponding to the partition Aξ ∨Aζ . The random variables are independent
if and only the corresponding partitions are. If Aξ re�nes Aζ (modulo nullsets)
, the the atom Aζ(x) is determined by Aξ(x), hence ζ is a function of ξ (a.s.),
that is, there is a function I → J such that ζ = f(ξ) (a.s.). The converse is
trivially true, and by symmetry, ξ and ζ are functions of each other if and only
if the partitions agree.

Using random variable notation, we de�ne

H(ξ|ζ) = H(µ,Aξ|Aζ)

(where µ is the underlying probability measure), and similarly deifne

H(ξ, ξ′|ζ, ζ ′) = H(µ,Aξ ∨ Aξ′ |Aζ ∨ Aζ′)

etc.
One interprets H(ξ) as a measure of the randomness of ξ: If it takes on

1 value e.s. then H(ξ) = 0, if it takes on n values then H(ξ) ≤ log n with
equality if and only if ξ(a) = 1

n for each of these values; etc. The inequality
H(ξ|ζ) ≤ H(ξ) (and equality if and only if ξ, ζ are independent) means that
the amount of uncertanty about ξ can only be decreased if we learn the output
of another ranodom variable ζ, and in fact it must decrease unless they are
independent.

Remark. The de�nition of entropy may seem somewhat arbitrary. However, up
to normalization, it is essentially the only possible de�nition if we wish (E1)�
(E5) to hold. A proof of this can be found in Shannon's original paper on
information theory and entropy, [?].



Chapter 10

Entropy of a stationary

process

10.1 Stationary processes and measure preserv-
ing systems

Recal that a stochastic process (ξn) is a sequence of random variables (de�ned
on a common probability space. A process is stationary if P(ξnξn+1 . . . ξn+k ∈
A0 × A1 × . . . × Ak) is independent of n. In partcular, every ξn has the same
distribution. In this section we are interested only in �nite valued processes, i.e.
those for which P(ξn ∈ Σ) = for some �nite set Σ.

For a �nite partition A = {Ai} of a set we write A(x) = i if x ∈ Ai. A
measure preserving system (X,B, µ, T ) together with a �nite partition A = {Ai}
de�ne a stationary process (ξn) by

ξn(x) = A(Tnx)

that is, ξn(x) = i if and only if Tnx ∈ Ai. This is de�ned for n ≥ 0 and, it T is
invertible, also for n < 0. Measure preservation implies that (ξn) is stationary.
Note that the partition of X determined by ξn is just T

−nA, and more generally,
ξm, . . . , ξn determines hte partition

Anm =

n∨
i=m

T−iA

Conversely, a �nite valued stochastic process (ξn) with values in Σ induces
a measure on ΣZ (the distribution of the sequence (ξn), which by stationarity is
shift invariant, and if we take A = {Aσ}σ∈Σ to be the partition of ΣZ according
tot he time-0 coordinate, i.e. Aσ = {x : x0 = σ}, then the process (ζn) arising
from A as above has the same distribution as the original process (ξn). Thus,
up to identifying processes with the same distribution, stationary sstochstic

83
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processes and measure preserving systems with a distinguished partition are
equivalent models.

10.2 Entropy of a stationary process

De�nition 10.2.1. Let ξ = (ξn) be a �nite-valued stationary stochasticprocess.
The entropy h(ξ) of the process is the limit

h(ξ) = lim
n→∞

1

n
H(ξ0, . . . , ξn−1)

Let (X,B, µ, T ) be a measure preserving system. The entropy of a �nite parti-
tion A of the system is

hµ(T,A) = lim
n→∞

1

n
Hµ(An−1

0 )

= lim
n→∞

1

n
Hµ(

n−1∨
k=0

T−kA)

Lemma 10.2.2. The limits in the de�nition exists.

Proof. Set
an = H(ξ0, . . . , ξn−1)

Then the existence of the limit will follow if we show that an is sub-additive,
i.e. am+n ≤ am + an. Indeed,

am+n = H(ξ0, . . . , ξm−1, ξm, . . . , ξm+n−1)

= H(ξ0, . . . , ξm−1) +H(ξm, . . . , ξm+n−1|ξ0 . . . ξm−1)

≤ H(ξ0, . . . , ξm−1) +H(ξm, . . . , ξm+n−1)

= H(ξ0, . . . , ξm−1) +H(ξ0, . . . , ξn−1)

= am + an

where in the second to last line we used the fact that, by stationarity, ξ0, . . . , ξn−1

and ξm, . . . , ξm+n−1 have the same distribution, and hence the same entropy.

Example 10.2.3. Let ξ = (ξn) be i.i.d. with marginal p ∈ P(Σ), that is, P(ξn =
σ) = pσ and the ξn are independent. Then ξi is independent of ξi+1, . . . , ξi+k
and hence

H(ξi, . . . , ξi+k) = H(ξi) +H(ξi+1, . . . , ξi+k) = H(p) +H(ξi+1, . . . , ξi+k)

and so by induction
H(ξ0, . . . , ξn−1) = nH(p)

hence
h(ξ) = H(p)
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Example 10.2.4. Let X = S1, µ length measure and Rθ a rotation. Let A
denote the partition of X into northern and southern hemispheres (with some
convention for the endpoints). Then R−nρ A is also a partition into two intervals.
The partition An is then also a partition into intervals, and these are determined
by the endpoints of the intervals T−kA, k = 0, . . . , n− 1. There are at most 2n
such endpoints (exactly 2n if θ is irrational) and so An consists of at most 2n
intervals. Hence Hµ(An) ≤ log 2n by (E1) and

0 ≤ hµ(T,A) ≤ lim
n→∞

log 2n

n
= 0

so hµ(A) = 0.

The entropy of a process ξ = (ξn) can be interpreted as the average number
of bits per symbol needed to code long blocks. Indeed, if we want to encode
ξ0 . . . ξn−1, we need at least H(ξ0 . . . ξn−1) = nh(ξ) + o(n) bits on average, so
the number of of bits per symbol is obtaind by dividing by n, giving h(ξ) +
o(1). In fact we have seen that pre�x codes exist which code ξ0 . . . ξn−1 in
H(ξ0 . . . ξn−1) + 1 but on average, which is also h(ξ) + o(1) bits per symbol!
Thus, for a stationary process, we can get arbitrarily close to the optimal coding
rate if we code long blocks.

Entropy also has another intepretation, as the amoung of information of ξ0
given the past, or future:

Proposition 10.2.5. Let ξ = (ξn) be a stationary process. Then

h(ξ) = H(ξ0|ξ1, ξ2, . . .)

and if ξ is two-sided then also

h(ξ) = H(ξ0|ξ−1ξ−2 . . .)

Proof. Using (E3) we have

H(ξ0 . . . ξn−1) = H(ξn−1) +H(ξ0 . . . ξn−2|ξn−1)

= H(ξn−1) +H(ξn−2|ξn−1) +H(ξ0 . . . ξn−3)

...
...

=

n−1∑
k=0

H(ξk|ξk+1, ξk+2, . . . , ξn−1)

Now, H(ξ0|ξ1, . . . , ξn−1) → H(ξ0|ξ1, ξ2 . . .), so this is true also of the Cesaro
averages, and we get

h(ξ) = lim
n→∞

1

n
H(ξ0, . . . , ξn−1) = lim

n→∞

n−1∑
k=0

H(ξk|ξk+1, . . . , ξn−1) = H(ξ0|ξ1, ξ2 . . .)

The formula h(ξ) = H(ξ0|ξ−1, ξ−2, . . .) is proved similarly, going backwards.
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Remark 10.2.6. From the proof and the fact that the sequence H(ξ0|ξ1 . . . ξn−1)
is non-increasing in n we �nd that in fact 1

nH(ξ0, . . . , ξn−1) is non-increasing as
well.

De�nition 10.2.7. A process ξ = (ξn)∞n=−∞ is called deterministic if the past
deermines the future, that is, if ξ0 is a.s. determined by the past, ξ−1, ξ−2, . . .
(and hence ξ0, ξ1, . . . are a.s. all determined by ξ−1, ξ−2 . . .).

Lemma 10.2.8. ξ is deterministic if and only if h(ξ) = 0.

Proof. ξ0 is deterministic if and only if it is measurable with respect to σ(ξ−1, ξ−2, . . .),
if and only if its conditional entropy on this σ-algebra is zero. By the proposi-
tion, this is just saying that the entropy is zero.

The claim has a surprising consequence: A process is deterministic if and
only if it is also deterministic with time reversed, i.e. the past determines the
future, if and only if the future determines the past! This is because both imply
zero entropy. Interestingly, there is no known proof of this fact which does not
involve entropy.

10.3 An example: Decay of long words for Bernoulli
measures

Given a stationary process ξ = (ξn) with values in Σ, every word a ∈ Σ∗

is assigned a probability, namely p(a1 . . . an) = P(ξ1 . . . ξn = a1 . . . an). If we
observe the random sample ξ0 . . . ξn−1, it makes sense to ask what its probability
os occurring is, i.e., what is p(ξ0, . . . , ξn−1). In general this probability depends
on the sample, and besides being obviously decreasing as we increase the sample
size, it is not clear what regularity it possesses. We shall see that in fact the
rate of decay of this sequence is govorned by the entropy of the process. We
begin with an example.

Example 10.3.1. Let (ξn)∞n=0 be a {0, 1}-valued n i.i.d. process with P(ξn =
0) = p and P(ξn = 1) = 1 − p for some 0 < p ≤ 1

2 . If p = 1
2 then for every

sequence a ∈ {0, 1}n, P(ξ1 . . . ξn = a1 . . . an) = 2−n, independent of choice of
a. But if 0 < p < 1

2 then di�erent sequences may yield di�erent probabilities,
the minimal one being a = 00 . . . 0 with probability pn and the largest being
a = 11 . . . 1 with probability (1−p)n. In general, writing p0 = p and p1 = 1−p,
we have

P(ξ1 . . . ξn = a1 . . . a2) =

n∏
i=1

pai

= p#{1≤i≤n : ai=0} · p#{1≤i≤n : ai=1}

Now, for an in�nite realization a ∈ {0, 1}N of the process, by the ergodic theorem
(or law of large numbers),

#{1 ≤ i ≤ n : ai = 0} = n(p+ o(1))
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and
#{1 ≤ i ≤ n : ai = 1} = n(1− p+ o(1))

Therefore with probability one over the choice of a,

P(ξ1 . . . ξn = a1 . . . a2) = pn(p+o(1))(1− p)n(1−p+o(1))

= 2n(−p log p−(1−p) log(1−p)+o(1))

= 2nH(p)+o(n)

In other words, with probability one over the choice of a,

lim
n→∞

1

n
logP(ξ1 . . . ξn = a1 . . . a2) = H(p)

So, although di�erent realizations have initial segments with di�erent probabil-
ities, asymptotically the probabilities are a.s. the same (when measured in this
way).

In particular, for any ε > 0, the set of sequences

Σn = {a ∈ {0, 1}n : 2−(H(p)+ε)n ≤ P(ξ1 . . . ξn = a1 . . . an) ≤ 2−(H(p)−ε)n}

satis�es that a.s., x1 . . . xn ∈ Σn for all large enough n; hence P (ξ1 . . . ξn ∈
Σn)→ 1 as n→∞. This tells us that most realizations of the �rst n variables
occur with �comparable� probabilities.

10.4 Maker's theorem

Theorem 10.4.1. Let (X,B, µ, T ) be a measure-preserving system. Let fn ∈ L1

and fn → f a.e. Suppose that supn |fn| ∈ L1. Then

1

N

N−1∑
n=0

TnfN−n → E(f |I)

a.e. and in L1, where I ⊆ F is the σ-algebra of T -invariant sets. Also,

1

N

N−1∑
n=0

Tnfn → E(f |I)

Proof. We prove the �rst statement, and begin under the assumption that T is
ergodic, so I is trivial.

We �rst claim that we may assume that f ≡ 0. By the ergodic theorem
1
N

∑N−1
n=0 T

nf → E(f |I) a.e. and in L1, so in order to prove the theorem it

is enough to show that 1
N

∑N−1
n=0 T

n(fN−n − f) → 0 a.e. and in L1. Since
supn |fn − f | ∈ L1, we have reduced to the case f ≡ 0.

Assume now f ≡ 0. Let ε > 0 and let

g = sup
n
|fn|
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By assumption g ∈ L1, so we can �x δ > 0 such that for any set E with µ(E) < δ
we have

´
E
gdµ < ε.

Since fn → 0 a.e., there is an n0 and a set A with µ(A) > 1 − δ such that
|fn(x)| < ε for x ∈ X and all for n > n0.

Now consider f ′n = 1Afn and f ′′n = 1X\Afn, so fn = f ′n + f ′′n . Since |f ′n| < ε
for n > n0 and |f ′n| ≤ g, we have

1

N

N−1∑
n=0

|Tnf ′N−n| <
1

N

N−n0−1∑
n=0

ε+
1

N

N−1∑
n=N−n0−1

Tng

< ε+
1

N

(
N−1∑
n=0

Tng −
N−n0−1∑
n=0

Tng

)
(10.1)

The last term on the right tends to 0 a.e. and in L1 as N →∞. On the other
hand

1

N

N−1∑
n=0

Tn|f ′′N−n| ≤
1

N

N−1∑
n=0

Tn|1X\Ag|

→
ˆ
X\A

g dµ

< ε (10.2)

a.e. and in L1, because µ(X \ A) < δ. Combining the two inequalities we
conclude that

lim sup
N→∞

1

N

N−1∑
n=0

Tn|fN−n| ≤ lim sup
N→∞

1

N

N−1∑
n=0

Tn|f ′N−n|+ lim sup
N→∞

1

N

N−1∑
n=0

Tn|f ′′N−n|

≤ 2ε

so 1
N

∑N−1
n=0 T

n|fN−n| → 0 a.e., and similarly, taking the L1-norm, in L1.
In the case that I is non-trivial we proceed in the same manner, but in (10.2)

the conclusion becomes

1

N

N−1∑
n=0

Tn|f ′′N−n| → E(1X\Ag|I)

Now,
´
E(1X\Ag|I)dµ =

´
1X\Agdµ < ε, and since 1X\Ag ≥ 0 and conditional

expectation is a positive operator, E(1X\Ag|I) ≥ 0 a.s. Thus by Markov's
inequality

µ(E(1X\Ag|I) ≥
√
ε) ≤

´
E(1X\Ag|I)dµ

√
ε

<
√
ε

We �nd that

µ

(
x : lim sup

N→∞

1

N

N−1∑
n=0

Tn|f ′′N−n|(x) >
√
ε

)
<
√
ε
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and so as before, combining the above with (10.1),

µ

(
x : lim sup

N→∞

1

N

N−1∑
n=0

Tn|fN−n|(x) > ε+
√
ε

)
<
√
ε

Taking εk = 2−k, we have
∑√

εk < ∞. Applying Borel-Cantelli, we �nd that

a.e. x is in �nitely many of the events above and hence a.s. 1
N

∑N−1
n=0 T

n|fN−n|(x)→
0 as desired.

10.5 The Shannon-McMillan-Breiman theorem

Recal that for a partition B we write B(x) for the element of B containing x.
Recall that Anm =

∨n
i=m T

−iA and note that

Ak−1
0 (x) =

k−1⋂
i=0

(T−iA)(x)

Theorem 10.5.1. Let ξ = (ξn)∞n=0 be an ergodic stationary process with values
in a �nite set I. Let p(a1 . . . an) = P(ξ1 . . . ξn = a1 . . . an). Then

lim
n→∞

1

n
log p(ξ1 . . . ξn) = h(ξ)

almost-surely and in L1.
Equivalently, let (X,F , µ, T ) be an ergodic measure preserving system and

A a �nite partition. Then for a.e. x,

lim
n→∞

1

n
logµ(An−1

0 (x)) = hµ(T,A)

Proof. The two versions are related in the usual way, noting that if ξk = ξ0 ◦T k
and A = Aξ0 then

p(ξ0(x), . . . , ξk−1(x)) = µ(

k−1⋂
i=0

(T−iA)(x)) = µ(Ak−1
0 (x))

We shall work with the partition formulation.
Fix x. De�ning Anm = {X} to be the trivial partition when m > n, the law

of total probability tells us that

µ(An−1
0 (x)) = µ(

n−1⋂
k=0

(T−kA)(x))

n−1∏
k=0

µ((T−kA)(x)|An−1
k+1(x))

=

n−1∏
k=0

µ(A(T kx)|An−(k+1)
1 (T kx))
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Hence

logµ(An−1
0 (x)) =

n∑
k=1

µ(A(T kx)|An−(k+1)
1 (T kx))

Therefore, if we de�ne

fk = − logµ(A(x)|Ak−1
1 (x)),

then we have

− 1

n
logµ(An−1

0 (x)) =
1

n

n−1∑
k=0

fn−k(T kx)

In order to complete the proof, we show that the fk satisfy the hypothesis
of maker's theorem, and identify the limit. Let

f(x) = − logµx(A(x)|
∞∨
i=1

T−iA)

(that is, if x ∈ A ∈ A then f(x) = µx(A|
∨∞
i=1 T

−iA)).

Claim 10.5.2. fk → f a.e.

Proof. Immediate from the martingale theorem, since �xing A ∈ A, for µ-a.e.
x ∈ A, we have

µx(A(x)|Ak−1
1 ) = µx(A|

k−1∨
i=1

T−iA)

= E(1A|
k−1∨
i=1

T−iA)(x)

−−−−→
n→∞

E(1A|
∞∨
i=1

T−iA)(x)

= f(x)

Claim 10.5.3. supk |fk| ∈ L1

Proof. Let
Et = {x : sup

k
fk(x) > t}

It su�ces for us to show that µ(Et) < C ·2−t where C is independent of t, since
then

0 ≤ sup
k
|fk| ≤

∞∑
n=0

1En

and the right hand side is integrable.
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For each A ∈ A consider the family UA of sequences (Ai)
k
i=1 of any length

for which Ai ∈ T−iA, and such that

− log
µ(A ∩

⋂k
i=1Ai)

µ(
⋂k
i=1Ai)

> t

but (Ai)
`
i=1 does not satisfy this for any 1 ≤ ` < k. Evidently the sets

⋂k
i=1Ai

are pairwise disjoint as (Ai) ranges over UA, and every x ∈ A ∩ Et belongs to
such an intersection. Therefore it su�ces for us to show that

µ(A ∩
⋃

(Ai)∈UA

⋂
Ai) < 2−t

since then, summing over A ∈ A, we have µ(Et) < |A| · 2−t.
To show the last inequality above, observe that for each (Ai) ∈ UA we have

µ(

k⋂
i=1

Ai ∩A) = µ(

k⋂
i=1

Ai) ·
µ(A ∩

⋂k
i=1Ai)

µ(
⋂k
i=1Ai)

< 2−t · µ(

k⋂
i=1

Ai)

Therefore, using the fact that the sets
⋂k
i=1Ai are pairwise disjoint for (Ai) ∈

UA,

µ(A ∩
⋃

(Ai)∈UA

⋂
Ai) =

∑
(Ai)∈UA

µ(A ∩
⋂
Ai)

< 2−t
∑

(Ai)∈UA

µ(
⋂
Ai)

≤ 2−tµ(
⋃

(Ai)∈UA

⋂
Ai)

≤ 2−t

as desired.

We can now apply Makers theorem and deduce that − 1
n logµ(An(x)) →

E(f |I) a.s. as n → ∞, where I is the σ-algebra of T -invariant sets. Since our
system is ergodic this is simply

´
fdµ, and we have already seen that this is the

entropy of the system.

Remark 10.5.4. The proof shows that convergence holds also in the non-ergodic
case, and the limit is E(f |I). If µ =

´
νxdµ(x) is the ergodic decomposition

of µ, then E(f |I)(x) =
´
f dνx. It is also not too hard to show that

´
fdνx =

hνx(T,A) a.s. Therefore 1
n logµ(An(x))→ hνx(T ) a.s.
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10.6 Entropy-typical sequences

Let ξ = (ξn) be an ergodic process with values in the �nite set Σ and entropy
h = h(ξ). For a ∈ Σn write

p(a) = P(ξ1 . . . ξn = a)

For ε > 0 let

Tn,ε = {a ∈ Σn : 2−n(h+ε) < p(a) < 2−n(h−ε)}

We say that a ∈ Tn,ε is ε-entropy typical. It is clear that

|Tn,ε| < 2n(h+ε)

because
1 ≥

∑
a∈Tn,ε

p(a) > |Tn,ε| · 2−n(h+ε)

Theorem 10.6.1 (asymptotic equipartition property). With the above nota-
tion, for every ε > 0, with probability one we have

ξ1 . . . ξn ∈ Tn,ε for all large enough n

(In particular P(ξ1 . . . ξn ∈ Tn,ε)→ 1). Also, for all large neough n,

1

2
.2n(h−ε) < |Tn,ε| < 2n(h+ε)

Proof. The �rst statement is a reformulation of Shannon-McMillan Breiman,
and since fn = 1(ξ!...ξn)∈Tn,ε tends pointwise to 1, it also tends to one in the
mean, hence P(ξ1 . . . ξn ∈ Tn,ε) → 1. Finally, we already saw that |Tn,ε| ≤
2n(h+ε). For the other bound, note that by the �rst part of the theorem,

P(p(ξ1 . . . ξn) < 2−n(h−ε)) >
1

2

for all large n. Thus

1

2
<
∑
a∈Tn,ε

p(a) < |Tn,ε| · 2−n(h−ε)

from which the claim follows.

The theorem says that for large n typical samples of the process have
essentially the same probability. Indeed, with high probability any two in-
dependent words have probabilities which are within a subexponential multiple
of each other, because

a, b ∈ Tn,ε =⇒ 2−εn <
p(a)

p(b)
< 2εn or:

1

n
| log p(a)− log p(b)| < ε

We can derive the following conclusion:
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As n→∞ with probability 1− o(1), the word ξ1 . . . ξn is drawn
from a set of size 2n(h+o(1)) and has probability 2−n(h+o(1)).

This gives us a new way to understand the possibility of approximating Shan-
non's lower bound when coding long sample of the process. We can use the
following procedure:

� Fix ε > 0 and n large large enough that P(ξ1 . . . ξn ∈ Tn,ε) > 1 − ε and
|Tn,ε| < 2n(h+ε).

� Let m0 = dn(h+ ε)e, and choose an injective map c0 : Tn,ε → {0, 1}m0 ,
which we can do because of our bound on |Tn,ε|.

� Let m1 = dlog |Σ|ne ≤ n dlog |Σ|e, and choose an injective map c1 : Σn →
{0, 1}m1 .

� De�ne c : Σn → {0, 1}∗ by

c(a) =

{
0c0(a) a ∈ Tn,ε
1c1(a) otherwise

This is clearly a pre�x code: if c(a) is a pre�x of c(b), then theh begin with the
same letter, so either c(a) = 0c0(a) and b = 0c0(b), in which case a = b because
c0 is injective, or c(a) = 1c1(a) and c(b) = 1c2(b) with the same conclusion. The
mean coding length of c is easy to compute since

c(ξ1 . . . ξn) = (1 +m0)1{ξ1...ξn∈Tn,ε} + (1 +m1)1{ξ1...ξn /∈Tn,ε}

hence

E(|c(ξ1 . . . ξn)|) = (1 +m0)P(ξ1 . . . ξn ∈ Tn,ε) + (1 +m1)P(ξ1 . . . ξn /∈ Tn,ε)
≤ (2 + n(h+ ε)) + (2 + n log |Σ|)ε
= n(h+ ε+ o(1))



Chapter 11

Kolmogorov-Sinai entropy

11.1 Entropy of a measure preserving system

We have de�ned the entropy of a partition in a m.p.s. However, di�erent par-
titions can give di�erent entropies (each system gives rise to many processes).
For example, in any system the trivial partition into one set has entropy zero.
To obtain a number associated to the system alone we have the following.

De�nition 11.1.1. The Kolmogorov-Sinai entropy (or just entropy) of a mea-
sure preserving system (X,F , µ, T ) is

hµ(T ) = sup{hµ(T,A) : A a �nite patition of X}

It is possible to have hµ(T ) =∞. Indeed the entropy hµ(T,A) is �nite when
A is �nite but the upper bound log |A| tends to in�nity when the size of the
partition does, and it is possible for the dynamical entropy to approach in�nite
as well. For exmepe, let λ be Lebesgue measure on [0, 1] and µ = λZ, which is
shift-invariant. The partition An of [0, 1] into n equal sub-intervals induces a
partition of [0, 1]Z by partitioning according to the time-0 coordinate. Then the
sequence T−k(An) are independent, so

hµ(T,An) = Hµ(T,An) = log n→∞

hence
hµ(T ) =∞

Proposition 11.1.2. Entropy is an isomophism invariant, i.e. isomorphic
systems have the same entropy.

Proof. Suppose (Xi,Fi, µi, Ti), i = 1, 2, are m.p.s.'s and f : X1 → X2 an iso-

morphism between them. For any sets B0, . . . , Bk ∈ F2 and B =
⋂k
i=0 T

−1Bk,
we have

f−1(B) =

k⋂
i=0

T−i(f−1Bi)

94
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It follows that for any partition B of F2 and A = f−1B, there is a measure-
preserving identi�cation between the atoms of Bk1 and Ak1 , given by f−1, and
therefore

Hµ(Ak1) = Hµ(Bk1 )

which implies
hµ(T1,A) = hµ(T2,B)

Thus

hµ(T!) = sup{hµ(T1,A) : A a �nite patition of X1}
≥ sup{hµ(T1, f

−1(B)) : B a �nite patition of X2}
= sup{hµ(T2,B) : B a �nite patition of X2}
= hµ(T2)

The reverse inequality follows by symmetry, proving the claim.

Calculating entropy is potentially di�cult, since one must take into account
all partitions. In practice, it is enough to consider a dense family of partitions,
and sometimes even a single one. The following proposition allows us to compare
the entropy determeined by two partitions.

Proposition 11.1.3. Let A,B be partitions in an invertible measure preserving
system (X,F , µ, T ). Then

hµ(T,A ∨ B) = hµ(B) +Hµ(A|A∞1 ∨ B∞−∞)

and in any system (even not invertible),

hµ(T,A ∨ B) ≤ hµ(B) +Hµ(A|A∞1 ∨ B∞0 )

Proof. For each n, using (E3) once and then again inductively as in Proposition
??,

Hµ((A ∨ B)n−1
0 ) = Hµ(An−1

0 ∨ Bn−1
0 )

= Hµ(Bn−1
0 ) +Hµ(An−1

0 |Bn−1
0 )

= Hµ(Bn−1
0 ) +

n−1∑
m=0

Hµ(T−mA|An−1
m+1 ∨ B

n−1
0 )

= Hµ(Bn−1
0 ) +

n−1∑
m=0

Hµ(A|An−m−1
1 ∨ Bn−m−1

−m )

Dividing by n and taking n → ∞ the left hand side and the �rst term on the
right tend to hµ(T,A ∨ B) and hµ(T,B) respectively. To evaluate the limit

lim
n→∞

1

n

n−1∑
m=0

Hµ(A|An−m−1
1 ∨ Bn−m−1

−m )
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note that for every m we have

n−1∑
m=0

Hµ(A|An−m−1
1 ∨ Bn−m−1

−m ) ≥ Hµ(A|A∞1 ∨ B∞−∞)

hence the right hand side is a lower bound for the limit. On the other hand, for
m >

√
n we have

Hµ(A|An−m−1
1 ∨ Bn−m−1

−m ) ≤ Hµ(A|A
√
n

1 ∨ B
√
n

−
√
n
)

and for every m the terms are bounded by log |A|, hence

n−1∑
m=0

Hµ(A|An−m−1
1 ∨ Bn−m−1

−m ) ≤
√
n

n
· log |A|+ n−

√
n

n
·Hµ(A|A

√
n

1 ∨ B
√
n

−
√
n
)

The right hand side tends to Hµ(A|A∞1 ∨ B∞−∞), completing the proof.
In the non-invertible case we start with the same identity and note that

conditioning only on T−kB for non-negative k only can only increase the entropy.
The rest is the same.

De�nition 11.1.4. A partition A in an invertible measure preserving system
(X,F , µ, T ) is a generating partition if

∨∞
n=−∞ T−nA = F up to µ-measure 0

(that is F = σ(An : n ∈ Z)). If
∨∞
n=0 T

−nA = F we say that A is a one-sided
generator (this de�nition makes sense also when T is not invertible).

Theorem 11.1.5. Let B be a generating (or one-sided generating) partition in
a measure preserving system (X,F , µ, T ). Then hµ(T ) = hµ(T,B).

Proof. We prove the case of an invertible system, the other is similar. We must
show that hµ(T,A) ≤ hµ(T,B) for any �nite partition A. Indeed, �xing A,

hµ(T,A) ≤ hµ(T,A ∨ B)

= hµ(T,B) + hµ(T,A|
∞∨
k=1

T−kA ∨
∞∨

k=−∞

T−kB)

= hµ(T,B)

because A ∈ B∞−∞.

Corollary 11.1.6. Let µ0 be a measure on a �nite set A. Then the entropy of
the product system µZ

0 with the shift is H(µ0). In particular the product measures
{ 1

2 ,
1
2}

Z and { 1
3 ,

,1
3 ,

1
3}

Z with the shift maps are not isomorphic.

Proof. For a �nite set A, the partition according to the 0-coordinate generates
in the system (AZ,σ), so the entropy is the entropies of this partition, which is
just H(µ0).

In the absence of a generating partition, entropy can also be computed as
follows.
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Theorem 11.1.7. Let E be an algebra of sets which generate the σ-algebra F
of a measure preserving system (X,F , µ, T ). Then hµ(T ) = suphµ(T,B), where
the supremum is over E-measurable partitions B.

Proof. Write α = supHµ(T,B) for B as above. Evidently Hµ(T ) ≥ α so we only
need to prove the opposite inequality. For any �nite partition A, it is possible
to �nd a re�ning sequence Cn, n = 1, 2, . . . , of E-measurable partitions such
that A ∈

∨∞
n=1 Cn. Then the argument in the proof of the previous theorem

shows that Hµ(T,A) ≤ limHµ(T, Cn) ≤ α.

11.2 Formal properties of entropy

Lemma 11.2.1 (Elemntary properties). 1. 0 ≤ hµ(T,A) ≤ log |A|

2. hµ(T,A) ≤ hµ(T,A ∨ B) ≤ hµ(T,A) + hµ(T,B)

3. hµ(T,A) = hµ(T,Ak) for all k ≥ 1.

4. hµ(T k,Ak−1
0 ) = hµ(T,A).

5. If T is invertible, then hµ(T,A) = hµ(T−1,A).

Proof. These are all easy consequences of the properties of Shannon entropy.
For example,. to prove (3) note that

(Am−1
0 )n−1

0 =

n−1∨
k=0

T−kAm−1
0

=

n−1∨
k=0

T−k(

m−1∨
j=0

T−jA)

=

n+m−2∨
k=0

T−kA

= An+m−2
0

so

lim
n→∞

1

n
Hµ((Am−1

0 )n−1
0 ) = lim

n→∞

n+m− 2

n
· 1

n+m− 2
Hµ(An+m−2

0 ) = hµ(T,A)

For (4), let k ∈ N+. We saw that hµ(T,A) = hµ(T,Ak−1
0 ). Now,

n−1∨
i=0

T−ki(

k−1∨
j=0

T−jA) = Akn−1
0

so

hµ(T k,Ak−1
0 ) = lim

n→∞

1

n
Hµ(

n−1∨
i=0

T−ki(

k−1∨
j=0

T−jA)) = k· lim
n→∞

1

kn
Hµ(Akn−1

0 ) = khµ(T,A)
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We leave the west to the reader.

Lemma 11.2.2. .

1. hµ(T k) = |k|hµ(T ).

2. hµ(T × S) = hµ(T ) + hµ(S)

Proof. For any �nite partition A we saw that hµ(T,A) = khµ(T k,Ak−1
0 ). This

implies that

hµ(T k) = sup
B
{hµ(T k,B)}

≥ hµ(T k,Ak−1
0 )

=
1

k
hµ(T,A)

On the other hand since Ak−1
0 re�nes A, so

hµ(T k,A) ≤ hµ(T k,Ak−1
0 ) = khµ(T,A)

and this holds for all �nite partitions A, which gives the reverse inequality.
For the second statement, let A be a partition of T and B a partition of S,

identi�d as partitions of the product system. These are independent partitions
so

hµ(T × S,A× B) = lim
1

n
Hµ(

n−1∨
i=0

T−iA ∨
n−1∨
i=0

T−iB)

= lim
1

n

(
Hµ(

n−1∨
i=0

T−iA) +Hµ(

n−1∨
i=0

T−iB)

)
= hµ(T,A) + hµ(T,B)

This shows that hµ(T × S) ≥ hµ(T ) + hµ(S). On the other hand, the algebra
generated by product sets is dense in the product σ-algebra, so hµ(T ×X) is the
supremum of partitions from this algebra, and every such partition is re�ned by
a partition of the form A ∨ B as above; so hµ(T × S) ≤ hµ(T ) + hµ(S).

11.3 Factors and relative entropy

De�nition 11.3.1. Factor

Remark 11.3.2. Identi�cation of factors with sub-σ-algebras

Example 11.3.3. Trivial factors, factor generated by a partition/family of sets,
product systems and marginal projections.
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De�nition 11.3.4. The entropy of a partition A in (X,B, µ, T ) relative to a
factor E ⊆ B is

hµ(T,A|E) = lim
n→∞

1

n
Hµ(An−1

0 |E)

and the entropy of the system relative to E it

hµ(T |E) = sup{hµ(T,A) : A a �nite partition of X}

The limit in the de�nition exists by subadditivity using exactly the same
calculation as without the factor. the same proof also gives:

Proposition 11.3.5. hµ(T,A|B) = H(A|
∨∞
i=1 T

iA ∨ B).

Remark 11.3.6. The usual de�nition is relative to the trivial factor.

Recall that

hµ(T,A ∨ B) = hµ(T,B) +H(A|A∞1 ∨ B∞−∞)

Proposition 11.3.7. If E is a factor of (X,F , µ, T ) then hµ(T ) = hµ(T |E) +
hµ(T |E), assuming that hµ(T |E) <∞.

Proof. For any partitions A ⊆ F and B ⊆ E we have

hµ(T ) ≥ hµ(A ∨ B)

= hµ(T,B) +H(A|A∞1 ∨ B∞−∞)

≥ hµ(T,B) +H(A|A∞1 ∨ E)

= hµ(T,B) + hµ(T,A|E)

This shows that hµ(T ) ≥ hµ(T |E) + hµ(T |E). On the other hand, by choosing
A �ne enough we can ensure that |hµ(T )− hµ(A ∨ B)| is arbitrarily small and
likewise |hµ(T,A|E) − hµ(T |E)|. Also choosing B �ne enough we can ensure
that |hµ(T,B)− hµ(T |E)| is arbitrarily small. Finally, we can choose B so that
|H(A|A∞1 ∨ E) − hµ(T,B) + hµ(T,A|E)| is arbitrarily small. This controls all
the inequalities above and allows us to reverse them with an arbitrarily small
error. This proves the claim.

Corollary 11.3.8. If A generates the system and B generates a factor then the
relative entropy is H(A|

∨∞
i=1 T

iA ∨
∨∞
i=−∞ T iB).

11.4 The Pinsker algebra

Given a set A ⊆ X let PA = {A,X \A}.

De�nition 11.4.1. The Pinsker algebra (really a σ-algebra) of a m.p.s.
(X,B, µ, T ) is

Π = {A ∈ F : hµ(T,PA) = 0}

Clearly Π is T -invariant.
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Proposition 11.4.2. Π is a σ-algebra.

Proof. Let A ∈ σ(Π). Thus there are An ∈ Π with A ∈ σ(A1, A2, . . .) up to
measure 0. Letting Bn =

∨n
i=1 PAi , we have

hµ(T,Bn) ≤
n∑
i=1

hµ(T,PAi) = 0

so hµ(T,Bn) = 0. Also

hµ(T,A|Bn)→ hµ(T,A|
∞∨
i=1

PAi) = hµ(T,A|Π) = 0

Hence

0 ≤ hµ(T,PA) ≤ hµ(T,PA ∨ Bn) = hµ(T,Bn) + hµ(T,A|Bn)→ 0

so A ∈ Π.

11.5 The tail algebra and Pinsker's theorem

De�nition 11.5.1. For a stationary process ξ = (ξn)∞n=−∞, the tail algebras
(some called the remote past and future algebras)

T −(ξ) =

∞⋂
n=1

σ(. . . ξ−n−1ξ−n)

T +(ξ) =

∞⋂
n=1

σ(ξn, ξn+1, . . .)

For a partition A we similarly write

T −(A) =
⋂
n∈N

−n∨
i=−∞

T−iA

T +(A) =
⋂
n∈N

∞∨
i=n

T−iA

Theorem 11.5.2. If A generates then Π = T ±(A).

Proof. Let B ∈ T −(A). Since A generates we have

hµ(T ) = hµ(T,A) ≤ hµ(T,A ∨ B) ≤ hµ(T )
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and so

hµ(T ) = hµ(T,A ∨ B)

= hµ(T,B) + hµ(T,A|B)

= hµ(T,B) +Hµ(A|
−1∨

i=−∞
T−iA ∨

∞∨
i=−∞

T−iB)

= hµ(T,B) +Hµ(A|
−1∨

i=−∞
T−iA)

= hµ(T,B) + hµ(A)

where in the last transition we used that T −(A) ⊆
∨−1
i=−∞ T−iA and T jB ∈

T −(A) for all j, hence
∨∞
i=−∞ T−iB ⊆ T −(A). Subtracting hµ(T,A) from both

sides gives hµ(T,B) = 0.
Now suppose that B ∈ Π. Then we again have, for every k,

Hµ(A|
−1∨

i=−∞
T−iA) = hµ(T )

= hµ(T,B) +Hµ(A|
−1∨

i=−∞
T−iA ∨

∞∨
i=−∞

T−iB)

= Hµ(A|
−1∨

i=−∞
T−iA ∨

∞∨
i=−∞

T−iB)

≤ Hµ(A|
−1∨

i=−∞
T−iA ∨ T−kB)

≤ Hµ(A|
−1∨

i=−∞
T−iA)

so we have for all k,

Hµ(A|
−1∨

i=−∞
T−iA) = Hµ(A|

−1∨
i=−∞

T−iA ∨ T−kB)

An elementary calculation using the conditional entropy formula shows that this
implies for all k that

Hµ(T−kB|
−1∨

i=−∞
T−iA) = Hµ(T−kB|

0∨
i=−∞

T−iA)

or equivalently, for all k,

Hµ(B|
k∨

i=−∞
T−iA) = Hµ(B|

k+1∨
i=−∞

T−iA)
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Now, since A generates, we know that

lim
n→∞

H(B|
n∨

i=−∞
T−iA) = H(B|

∞∨
i=−∞

T−iA) = 0

but since

H(B|
n∨

i=−∞
T−iA) = H(B|

n−1∨
i=−∞

T−iA) = . . . = H(B|
−1∨

i=−∞
T−iA)

we �nd that

lim
n→∞

H(B|
−1∨

i=−∞
T−iA) = 0

so B ∈
∨−1
i=−∞ T−iA. The same argument shows that B ∈

∨−k
i=−∞ T−iA for all

k, so B ∈ T −(A).

Corollary 11.5.3. T + = T −.

11.6 Systems with completely positive entropy

De�nition 11.6.1. CPE (K) systems

De�nition 11.6.2. A system has uniform mixing if for every partition P,
hµ(Tn,P)→ Hµ(P) as n→∞. In other words,

sup
N

(
1

N
Hµ(

N∨
i=1

T−nNP)−Hµ(P)

)
= o(1) as n→∞

Theorem 11.6.3. A system is CPE if and only if it has uniform mixing.

Proof. If hµ(T,Q) = 0 then hµ(Tn, Q) = 0 for all n so there is no uniform
mixing.

In the other direction if the system is CPE, then T −(P) ⊆ Π is trivial, so
from the martingale theorem,

Hµ(P|
−n∨

i=−∞
T−iP)→ Hµ(P ) as n→∞

since
∨−1
i=−∞ T−niP ⊆

∨−n
i=−∞ T−iP we have

Hµ(P|
−n∨

i=−∞
T−iP) ≤ Hµ(P|

−1∨
i=−∞

T−niP) ≤ Hµ(P )

hence

hµ(Tn,P) = H(P|
−1∨

i=−∞
T−niP)→ Hµ(P ) as n→∞
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Proposition 11.6.4. If T is uniformly mixing (equivalently CPE) then for any
partition P and any k,

H(

k−1∨
i=0

T−inP)→ kH(P)

In particular, for any functions f0, . . . , fk−1 ∈ L∞(µ),

ˆ
f0(x) · f1(Tnx) · f3(T−2nx) · . . . · fk−1(T (k−1)nx)dµ(x)→

∏ˆ
fidµ

and in particular T is strongly mixing.

Proof sketch. Let us do it for k = 2. First one shows that it is enough to prove
this for simple functions, hence for indicator functions. Let fi = 1Ai and let P
the partition determines by A1, A2. Now,

ˆ
f0(x) · f1(Tnx)dµ(x) =

ˆ
Eµ(f0 · Tnf1|Tnf1)dµ(x)

=

ˆ
Eµ(f0|Tnf1) · Tnf1dµ(x)

becayse E(ab|E) = aE(b|E) if a is E-measurable. Because Hµ(P|T−nP) →
Hµ(P), the partition T−nP becomes asymptotically independent of P, in the
sense that if µ(T−nB ∩C)→ µ(C)µ(B) for B,C ∈ P (this is an exercise in the
de�nition of entropy). Since f0 is P measurable and Tnf1 is T−nP-measurable
it follows that Eµ(f0|Tnf1) →

´
f0dµ. Then by bounded convergence and in-

variance we get that the equation above tends to
´
f0dµ

´
f1dµ as n → ∞, as

claimed.
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Appendix

12.1 The weak-* topology

Recall that for a compact metric space X, the weak-* topology on P(X) (the
space of Borel probability meaures on X) is the weakest topology which makes
µ 7→

´
fdµ continuous for every f ∈ C(X).

Proposition 12.1.1. Let X be a compact metric space. Then P(X) is metriz-
able and compact in the weak-* topology.

Proof. Let {fi}∞i=1 be a countable dense subset of the unit ball in C(X). De�ne
a metric on P(X) by

d(µ, ν) =

∞∑
i=1

2−i|
ˆ
fidµ−

ˆ
fidν|

It is easy to check that this is a metric. We must show that the topology induced
by this metric is the weak-* topology.

If µn → µ weak-* then
´
fidµn−

´
fidµ→ 0 as n→∞, hence d(µn, µ)→ 0.

Conversely, if d(µn, µ)→ 0, then
´
fidµn →

´
fidµ for every i and therefore

for every linear combination of the fis. Given f ∈ C(X) and ε > 0 there is a
linear combination g of the fi such that ‖f − g‖∞ < ε. Then

|
ˆ
fdµn −

ˆ
fdµ| < |

ˆ
fdµn −

ˆ
gdµn|+ |

ˆ
gdµn −

ˆ
gdµ|+ |

ˆ
gdµ−

ˆ
fdµ|

< ε+ |
ˆ
gdµn −

ˆ
gdµ|+ ε

and the right hand side is < 3ε when n is large enough. Hence µn → µ weak-*.
Since the space is metrizable, to prove compactness it is enough to prove

sequential compactness, i.e. that every sequence µn ∈ P(X) has a convergent
subsequence. Let V = spanQ{fi}, which is a countable dense Q-linear subspace
of C(X). The range of each g ∈ V is a compact subset of R (since X is compact

104
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and g continuous) so for each g ∈ V we can choose a convergent subsequence
of
´
gdµn. Using a diagonal argument we may select a single subsequence µn(j)

such that
´
gµn(j) → Λ(g) as j → ∞ for every g ∈ V . Now, Λ is a Q-linear

functional because

Λ(afi + bfj) = k lim

ˆ
(afi + bfj) dµn(k)

= lim
k→∞

a

ˆ
fidµn(k) + b

ˆ
fjdµn(k)

= aΛ(fi) + bΛ(fj)

Λ is also uniformly continuous because, if ‖fi − fj‖∞ < ε then

|Λ(fi − fj)| =

∣∣∣∣ lim
k→∞

ˆ
(fi − fj) dµn(k)

∣∣∣∣
≤ lim

k→∞

ˆ
|fi − fj |dµn(k)

≤ ε

Thus Λ extends to a continuous linear functional on C(X). Since Λ is positive
(i.e. non-negative on non-negative functions), sos is its extension, so by the
Riesz representation theorem there exists µ ∈ P(X) with Λ(f) =

´
fdµ. By

de�nition
´
gdµ−

´
gdµn(k) → 0 as k →∞ for g ∈ V , hence this is true for the

fi, so d(µn(k), µ)→ 0 Hence µn(k) → µ weak-* .

Sometimes when µn → µ one would like to say that µn(E)→ µ(E) for some
set E. This is not always true. For example, δ1/n → δ0 in R but δ1/n({0}) =
0 6→ 1 = δ0({0}). But there are some general things that can be said, and if the
set interacts nicely with the limit measure, the limit behaves �correctly�:

Lemma 12.1.2. Let X be a compact metric space. If µn → µ weak-* in P(X),
and if U ⊆ X is open and C ⊆ X is closed, then

lim inf µn(U) ≥ µ(U)

lim supµn(C) ≤ µ(C)

Proof. Let fk ∈ C(X) with fk ↗ 1U (e.g. fn(y) = 1 − e−kd(y,Uc)). Then
1U ≥ fn and so

lim inf µn(U) ≥ lim

ˆ
fkdµn =

ˆ
fkdµ→ µ(U)

The other inequality is proves similarly using gn ↘ 1C .

Proposition 12.1.3. Let X be a compact metric space. If µn → µ weak-* in
P(X) and if A ⊆ X satis�es µ(∂A) = 0 then µn(A)→ µ(A).
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Proof. Let U = interior(A) and C = A, so 1U ≤ 1A ≤ 1C . By the lemma,

lim inf µn(A) ≥ lim inf µn(U) ≥ µ(U)

and
lim supµn(A) ≤ lim supµn(C) ≤ µ(C)

But by our assumption, µ(U) = µ(C) = µ(A), and we �nd that

µ(A) ≤ lim inf µn(A) ≤ lim supµn(A) ≤ µ(A)

So all are equalities, and µn(A)→ µ(A).

12.2 Regularity

I'm not sure we use this anywherem, but for the record:

Lemma 12.2.1. A Borel probability measure on a complete (seperable) metric
space is regular.

Proof. It is easy to see that the family of sets A with the propertty that

µ(A) = inf{µ(U) : U ⊇ A is open}
= sup{µ(C) : C ⊆ A is closed}

contains all open and closed sets, and is a σ-algebra. Therefore every Boral set
A has this property. We need to verify that in the second condition we can
repace closed by compact. Clearly it is enough to show that for every closed set
C and every ε > 0 there is a compact K ⊆ C with µ(K >> µ(C)− ε.

Fix C and ε > 0. For every n we can �nd a �nite family Bn,1, . . . , Bn,k(n) of
δ-balls whose union Bn =

⋃
Bn,i intersects A in a set of measure > µ(A)−ε/2n.

Let K0 = C ∩
⋂
Bn, so that µ(K0) > µ(C) − ε. By construction K0 is pre-

compact, and K = K0 ⊆ C, so K has the desired property.

12.3 Conditional expectation

Whe (X,B, µ) is a probability space, f ∈ L1, and A a set of positive measure,
then the conditional expectation of f on A is usually de�ned as 1

µ(A)

´
A
f dµ.

When A has measure 0 this formula is meaningless, and it is not clear how
to give an alternative de�nition. But if A = {Ai}i∈I is a partition of X into
measurable sets (possibly of measure 0), one can sometimes give a meaningful
de�nition of the conditional expectation of f on A(x) for a.e. x, where A(x) is
the element Ai containing x. Thus the conditional expectation off on A is a
function that assigns to a.e. x the conditional expectation of f on the set A(x).
Rather than partitions, we will work with σ-algebras; the connection is made
by observign that if E is a countably-generated σ-algebra then the partition of
X into the atoms of E is a measurable partition.
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Theorem 12.3.1. Let (X,B, µ) be a probability space and E ⊆ B a sub-σ alge-
bra. Then there is a linear operator L1(X,B, µ)→ L1(X, E , µ) satisfying

1. Chain rule:
´
E(f |E) dµ =

´
f dµ.

2. Product rule: E(gf |E) = g · E(f |E) for all g ∈ L∞(X, E , µ).

Proof. We begin with existence. Let f ∈ L1(X,B, µ) and let µf be the �nite
signed measure dµf = fdµ. Then µf � µ in the measure space (X,B, µ) and
this remains true in (X, E , µ). Let E(f |E) = dµf/dµ ∈ L1(X, E , µ), the Radon-
Nykodim derivative of µf with respect to µ in (X, E , µ).

The domain of this map is L1(X,B, µ) and its range is in L1(X, E , µ) by the
properties of dµf/dµ.

Linearity follows from uniqueness of the Radon-Nykodim derivative and the
de�nitions. The chain rule is also immediate:ˆ

E(f |E) dµ =

ˆ
dµf
dµ

dµ =

ˆ
f dµ

For the product rule, let g ∈ L∞(X, E , µ). We must show that g · dµfdµ =
dµgf
dµ

in (X, E , µ). Equivalently we must show that

ˆ
E

g
dµf
dµ

dµ =

ˆ
E

dµgf
dµ

dµ for all E ∈ E

Now, for A ∈ E and g = 1A we have

ˆ
E

1A
dµf
dµ

dµ =

ˆ
A∩E

dµf
dµ

dµ

= µf (A ∩ E)

=

ˆ
A∩E

f dµ

=

ˆ
E

1Af dµ

=

ˆ
E

dµ1Af

dµ
dµ

so the identity holds. By linearity of these integrals in the g argument it holds
linear combinations of indicator functions. For arbitrary g ∈ L∞ we can take
a uniformly bounded sequence of such functions converging pointwise to g, and
pass to the limit using dominated convergence. This proves the product rule.

To prove uniqueness, let T : L1(X,B, µ)→ L1(X, E , µ) be an operator with
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these properties. Then for f ∈ L1(X,B, µ) and E ∈ E ,
ˆ
E

Tf dµ =

ˆ
1ETf dµ

=

ˆ
T (1Ef) dµ

=

ˆ
1Ef dµ

=

ˆ
E

f dµ

where the second equality uses the product rule and the third uses the chain
rule. Since this holds for all E ∈ E we must have Tf = dµf/dµ.

Proposition 12.3.2. The conditional expectation operator satis�es the follow-
ing properties:

1. Positivity: f ≥ 0 a.e. implies E(f |E) ≥ 0 a.e.

2. Triangle inequality: |E(f |I)| ≤ E(|f | |I).

3. Contraction: ‖E(f |E)‖1 ≤ ‖f‖1; in particular, E(·|E) is L1-continuous.

4. Sup/inf property: E(sup fi|E) ≥ supE(fi|E) and E(inf fi|E) ≤ inf E(fi|E)
for any countable family {fi}.

5. Jensen's inequality: if g is convex then g(E(f |E)) ≤ E(g ◦ f |E).

6. Fatou's lemma: E(lim inf fn|E) ≤ lim inf E(fn|E).

Remark 12.3.3. Properties (2)�(6) are consequences of positivity only.

Proof. (1) Suppose f ≥ 0 and E(f |E) 6> 0, so E(f |E) < 0 on a set A ∈ E of
positive measure. Applying the product rule with g = 1A, we have

E(1Af |E) = 1AE(f |E)

hence, replacing f by 1A, we can assume that f ≥ 0 and E(f |E) < 0. But this
contradicts the chain rule since

´
f dµ ≥ 0 and

´
E(f |E) dµ < 0.

(2) Decompose f ionto positive and negative parts, f = f+ − f−, so that
|f | = f+ + f−. By positivity,

|E(f |E)| = |E(f+|E)− E(f−|E)|
≤ |E(f+|E)|+ |E(f−|E)|
= E(f+|E) + E(f−|E)

= E(f+ + f−|E)

= E(|f | |E)
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(3) We compute:

‖E(f |E)‖1 =

ˆ
|E(f |E)| dµ

≤
ˆ

E(|f | |E)| dµ

=

ˆ
|f | dµ

= ‖f‖1

where we have used the triangle inequality and the chain rule.
(4) We prove the sup version. By monotonicity and continuity it su�ces

to prove this for �nite familis and hence for two functions. The claim now
follows from the identity max{f1, f2} = 1

2 (f1 + f2 + |f1 − f2|), linearity, and
the triangle inequality.

(5) For an a�ne function g(t) = at+ b,

E(g ◦ f |E) = E(af + b|E) = aE(f |E) + b = g ◦ E(f |E)

If g is convex then g = sup gi where {gi}i∈I is a countable family of a�ne
functions. Thus

E(g ◦ f |E) = E(sup
i
gi ◦ f |E)

≥ sup
i

E(gi ◦ f |E)

= sup
i
gi ◦ E(f |E)

= g ◦ E(f |E)

(6) Since infk>n fk ↗ lim inf fk as n→∞ the convergence is also in L1, so
by continuity and positivity the same holds after taking the conditional expec-
tation. Thus, using the inf property,

lim inf
n→∞

E(fn|E) = lim
n→∞

inf
k>n

E(fk|E)

≥ lim
n→∞

E( inf
k>n

fk|E)

= E(lim inf
n→∞

fn|E)

Corollary 12.3.4. The restriction of the conditional expectation operator to
L2(X,B, µ) coincides with the orthogonal projection π : L2(X,B, µ)→ L2(X, E , µ).

Proof. Write π = E(·|E). If f ∈ L2 then by by convexity of t→ t2 and Jensen's
inequality (which is immediate for simple functions and hence holds for f ∈ L1
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by approximation),

‖πf‖2 =

ˆ
|E(f |E)|2 dµ

≤
ˆ

E(|f |2|E) dµ

=

ˆ
|f |2 dµ by the chain rule

= ‖f‖2

Thus π maps L2 into the subspacfe of E-measurable L2 functions, hence π :
L2(X,B,m)→ L2(X, E , µ). We will now show that π is the identity on L2(X, E , µ)
and is π. Indeed, if g ∈ L2(X,E, µ) then for every A ∈ E

πg = E(g · 1|E)

= g · E(1|E)

Since
´
E(1|E) =

´
1 = 1, this shows that π is the identity on L2(X, E , ). Next

if f, g ∈ L2 then fg ∈ L1, and

〈f, πg〉 =

ˆ
f · E(g|E) dµ

=

ˆ
E (f · E(g|E)) dµ by the chain rule

=

ˆ
E (f |E)E(g|E) dµ by the product rule

=

ˆ
E (E(f |E) · g) dµ by the product rule

=

ˆ
E(f |E) · g dµ by the chain rule

= 〈πf, g〉

so π is self-adjoint.

12.4 Measure disintegration

We give a detailed proof of the following Theorem, which appeared in Section
5.3:

Theorem 12.4.1. Let X be compact metric space, B the Borel algebra, and
E ⊆ B a countably generated sub-σ-algebra. Then there is an E−measurable
family {µy}y∈X ⊆ P(X) such that µy is supported on E(y) and

µ =

ˆ
µy dµ(y)

Furthermore if {µ′y}y∈X is another such system then µy = µ′y a.e.
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We begin the proof.
We adopt the convention that y denotes the variable of E-measurable func-

tions.
Let V ⊆ C(X) be a countable dense Q-linear subspace with 1 ∈ V . For

f ∈ V let
f = E(f |E)

(see the Appendix for a discussion of conditional expectation). Since V is count-
able there is a subset X0 ⊆ X of full measure such that f is de�ned everywhere
on X0 for f ∈ V and f 7→ f is Q-linear and positive on X0, and 1 = 1 on X0.
Thus, for y ∈ X0 the functions Λy : V → R given by

Λy(f) = f(y)

are positive Q-linear functionals on the normed space (V, ‖·‖∞), and they are
continuous, since by positivity of conditional expectation

∥∥f∥∥∞ ≤ ‖f‖∞. Thus
Λy extends to a positive R-linear functionalΛy : C(X) → R. Note that Λy1 =
1(y) = 1. Hence, by the Riesz representation theorem, there exists µy ∈ P(X)
such that

Λyf =

ˆ
f(x) dµy(x)

For y ∈ X \X0 de�ne µy to be some �xed measure to ensure measurability.

Proposition 12.4.2. y → µy is E-measurable and E(1A|E)(y) = µy(A) µ-a.e.,
for every A ∈ B.

Proof. Let A ⊆ B denote the family of sets A ∈ B such that y 7→ µy(A)
measurable from (X, E) to (X,B) and E(1A|E)(y) = µy(A) µ-a.e. We want to
show that A = B.

Let A0 ⊆ B denote the family of sets A ⊆ X such that 1A is a pointwise
limit of a uniformly bounded sequence of continuous functions. First, A0 is an
algebra: clearly X, ∅ ∈ A, if fn → 1A then 1− fn → 1X\A, and if also gn → 1B
then fngn → 1A1B = 1A∩B .

We claim that A0 ⊆ A. Indeed, if fn → 1A and ‖fn‖∞ ≤ C then

ˆ
fn dµy →

ˆ
1A dµy = µy(A)

by dominated convergence, so y 7→ µy(A) is the pointwise limit of the functions
y 7→

´
fn dµy, which are the same a.e. as the measurable functions fn =

E(fn|E) : (X, E) → (X,B). This establishes measurability of the limit function
y 7→ µy(A) and also proves that this function is E(1A|E) a.e., since E(·|E) is
continuous in L1 and fn → 1A boundedly. This proves A0 ⊆ A.

Now, A0 contains the closed sets, since if A ⊆ X then 1A = lim fn for
fn(x) = exp(−n · d(x,A)). Thus A0 generates the Borel σ-algebra B.

Finally, we claim that A is a monotone class. Indeed, if A1 ⊆ A2 ⊆ . . .
belong to B′ and A =

⋃
An, then µy(A) = limµy(An), and so y 7→ µy(A) is the

pointwise limit of the measurable functions y 7→ µy(An). The latter functions
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are just E(1An |E) and, since 1An → 1A in L1, by continuity of conditional
expectation, E(1An |E) → E(1A|E) in L1. Hence µy(A) = E(1A|E) a.e. as
desired.

Since A is a monotone class containing the sub-algebra of A0 and A0 gen-
erates B, by the monotone class theorem we have B ⊆ A. Thus A = B, as
desired.

Proposition 12.4.3. E(f |E)(y) =
´
f dµy µ-a.e. for every f ∈ L1(µ).

Proof. We know that this holds for f = 1A by the previous proposition. Both
sides of the claimed equality are linear and continuous under monotone in-
creasing sequences. Approximating by simple functions this gives the claim for
positive f ∈ L1 and, taking di�erences, for all f ∈ L1.

Proposition 12.4.4. µy is µ-a.s. supported E(y), that is, µy(E(y)) = 1 ν-a.e.

Proof. For E ∈ E we have

1E(y) = E(1E |E)(y) =

ˆ
1E dµy = µy(E)

and it follows that µy(E) = 1E(y) a.e. Let {En}∞n=1 generate E , and choose a
set of full measure on which the above holds for all E = En. For y in this set
let Fn ∈ {En, X \ En} be such that E(y) =

⋂
Fn. By the above µy(Fn) = 1,

and so µy(E(y)) = 1, as claimed.

Proposition 12.4.5. If {µ′y}y∈Y is another family with the same properties
then µ′y = µy for µ-a.e. y.

Proof. For f ∈ L1(µ) de�ne f ′(y) =
´
f dµ′y. This is clearly a linear operator

de�ned on L1(X,B, µ), and its range is L1(X, E , µ) because

ˆ
|f ′| dµ ≤

ˆ
(

ˆ
|f | dµy) dµ(y) =

ˆ
|f | dµ = ‖f‖1

The same calculation shows that
´
f ′ dµ =

´
f dµ. Finally, for E ∈ E we know

that µy is supported on E for µ-a.e. y ∈ E and on X \ E for µ-a.e. y ∈ X \ E.
Thus µ-a.s. we have

(1Ef)′(y) =

ˆ
1Ef dµ

′
y = 1E(y)

ˆ
f dµ′y = 1E · f ′

By a well-known characterization of conditional expectation, f ′ = E(f |E) =
f .


