REVIEW PROBLEMS IN DYNAMICAL SYSTEMS AND ENTROPY

These problems are meant to help review the material.

- (1) Let (X, \mathcal{B}, μ, T) be an ergodic measure oreserving system. Let $A \subseteq X$ with $\mu(A) > 0$.
 - (a) Show that there is a measurable set $A_0 \subseteq A$ with $\mu(A_0) > 0$ and such that every $x \in A_0$ returns to A_0 infinitely often.
 - (b) Let $r(x) = \min\{n > 0 : T^n x \in A_0\}$ and define $S : A_0 \to A_0$ to be the map $x \mapsto T^{r(x)}x$. Show that S is measure rpreserving and ergodic

Note: S is defined almost everywhere on A and is sometimes called the *induced map* of A.

(2) Let (X, \mathcal{B}, μ, T) be a measure preserving system. Let $f : X \to \{0, 1, 2, 3, \ldots\}$ be a measurable function with $\int f d\mu < \infty$. Let

$$X_f = \{(x, n) : 0 \le n \le f(x)\}$$

This is the "region under the graph of f". On X_f let μ_f be the "normalized measure under the graph" of f, that is, the unique measure such that $\mu_f(A \times \{n\}) = \mu(A) / \int f d\mu$ for $A \subseteq f^{-1}(\{n\})$. Finally let $T_f : X_f \to X_f$ be the map

$$T_f(x,n) = \begin{cases} (x,n+1) & \text{if } n < f(x) \\ (Tx,0) & n = f(x) \end{cases}$$

Show that $(X_f, \mu_f T_f)$ is measure preserving, it is ergodic if and only if (X, μ, T) is, and that (X, \mathcal{B}, μ, T) is the induced map (in the sense of the previous peoblem) on the set $X \times \{0\} \subseteq X_f$.

- (3) In a topological system (X, T), show that if x, y are asymptotic (i.e. $d(T^n x, T^n y) \rightarrow 0$) and x is generic for a measure μ , then so is y.
- (4) Construct a point $x \in \{0,1\}^{\mathbb{N}}$ that is not generic for any measure (with respect to the shift).
- (5) Show that in $\{0,1\}^{\mathbb{Z}}$ with the shift, the non-generic points form a dense G_{δ} .
- (6) Show that every shift-invariant measure μ on $\{0,1\}^{\mathbb{Z}}$ has a generic point (for ergodic measures this is immediate, since μ -a.e. point is generic for μ . The point is to deal with non-ergodic measures).
- (7) Let $T : X \to X$ be a continuous map of a compact metric space acting ergodically on a measure μ . Suppose that there is a nonwhere-dense set $X_0 \subseteq X$ of positive measure. Show that the ergodic averages of continuous functions cannot converge uniformly (i.e. the system is not uniquely ergodic).
- (8) Give an example of a non-compact, locally compact X and continuous $T: X \to X$ without invariant probability measures.
- (9) Show that the set of ergodic measures for $X = \{0, 1\}^{\mathbb{N}}$ and the shift is dense in $\mathcal{P}_T(X)$ (Hint: consider periodic sequences).
- (10) Let (X, \mathcal{F}, μ, T) be a measure preserving system. Let $\mathcal{F}_0 \subseteq \mathcal{F}_1 \subseteq \ldots \subseteq \mathcal{F}$ be invariant sub- σ -algebras (factors) and suppose that X, \mathcal{F}_n, μ, T) is ergodic for all n. Suppose $\sigma(\mathcal{F}_0, \mathcal{F}_1, \ldots) = \mathcal{F}$. Show that (X, \mathcal{F}, μ, T) is ergodic. Show the same with the word "ergodic" replaces by "mixing".
- (11) (*) Let $([0,1], Borel, \mu, T)$ be a measure preserving system (you can assume ergodic if you want). Show that

$$\liminf_{n \to \infty} n \cdot |x - T^n x| \le 1$$

a.e. (this is a quantitative form of the Poincare recurrence theorem).

- (12) Let (X, \mathcal{B}, μ, T) be an invertible measure-preserving system. Let $\lambda \in S^1 \subseteq$ (12) Let (R,2, μ, 1) be an interfactor function protecting by section Let R ⊂ S ⊆ C and let U : L² → L² be the unitary operator U = λT. Describe the limit of the "ergodic averages" ¹/_N ∑_{n=0}^{N-1} Uⁿ f for f ∈ L².
 (13) Let X = {z ∈ C : |z| ≤ 1} with normalized area measure μ, and let
- $T(re^{i\theta}) = re^{i(\theta+r)}.$
 - (a) Show that T preserves μ .
 - (b) Is μ ergodic? Describe its ergodic components.
 - (c) What is the pure-point spectrum of T?
- (14) Let (X, \mathcal{B}, μ, T) be an invertible measure preserving system. Let $t_0 > 0$ and define a new map $S: X \times [0,1) \to X \times [0,1)$ by

$$S_{t_0}(x,t) = (T^{[t+t_0]}x, \{t+t_0\})$$

- (a) Show that this map preserves $\nu = \mu \times Leb|_{[0,1]}$. Show that $S_t S_s = S_{t+s}$, so in fact we have an action of \mathbb{R} on $X \times [0, 1)$.
- (b) Determine when S_{t_0} is ergodic. Describe its ergodic components and its spectrum.

Remark: compare to problem 2.

- (15) Construct a probability vector $p = (p_1, p_2, ...)$ such that $H(p) = \infty$.
- (16) Prove that for any finite-valued random variables X, Y, Z we have H(X|Y, Z) >H(X|Y) (we used this repeatedly in class, but I don't think we proved it. Hint: consult the proof that H(X|Y) > H(X). Show the same when the conditioning is on σ -algebras.
- (17) Prove that the product measure $\mu = (1/2, 1/2)^{\mathbb{Z}}$ is the only measure on $\{0,1\}^{\mathbb{Z}}$ with $h_{\mu}(S) = 1$ (all others are ≤ 1).
- (18) Use the previous question to conclude that if $\pi: \{0,1\}^{\mathbb{Z}} \to \{0,1\}^{\mathbb{Z}}$ is a continuous map satisfy $\pi S = S\pi$ (S the shift), then if π is 1-1, it must be onto.
- (19) Show that $h_{\mu \times \nu}(T \times S) = h_{\mu}(T) + h_{\nu}(S)$.
- (20) Prove that if (X, \mathcal{B}, μ, T) is mixing then for any non-trivial partition α of X, there is a sequence $n_k \to \infty$ such that $\frac{1}{N}H(\bigvee_{k=1}^N T^{-n_k}\alpha) \to 1$.
- (21) Let (X, \mathcal{B}, μ, T) be a measure preserving system. Define a pseudo-metric between partitions by $d(\mathcal{A}, \mathcal{B}) = H(\mathcal{A}|\mathcal{B}) + H(\mathcal{B}|\mathcal{A})$. Show that the entropy function $\mathcal{A} \mapsto h_{\mu}(T, \mathcal{A})$ is continuous in the space of finite partitions.
- (22) Give an example of an ergodic measure preserving system with infinite entropy, and conclude that it does not have a generating partition.
- (23) Show that if (X,T) is a topological system with a unique attracting fixed point (i.e. $T^n x \to x_0 = T x_0$) for some x_0 and all $x \in X$), then $h_{top}(T) = 0$.
- (24) Let $X = \{\pm 1\}^{\mathbb{Z}} \times \{\pm 1\}^{\mathbb{Z}}$, and define the map $X \to X$ by $T(x,y) = (Sx, S^{x(0)}y)$ where $S : \{\pm 1\}^{\mathbb{Z}} \to \{\pm 1\}^{\mathbb{Z}}$ is the shift. Let $\mu = \mu_0 \times \mu_2$ where $\mu_0 = \mu_1 = (1/2, 1/2)^{\mathbb{Z}}$. This system is called the " T, T^{-1} ". It is also called "random walk in random scenery", because the first sequence x can be thought of as the increments of a symmetric random walk on the integers; as time goes by we shift the x sequence, producing these increments, and shift the y-sequence either forward or backward according to this increment. Thus, if we view only they sequence, we see a random sequence of digits being shifted left and right randomly.

- (a) Show that (X, T, μ) is measure-preserving (this is an example of a skew product").
- (b) Consider the random variables $X_n, Y_n : X \to \{0, 1\}$ given by $X_n(x, y) = x_n$ and $Y_n(x, y) = y_n$ and consider the process $(X_n, Y_n)_{n=-\infty}^{\infty}$. Show that a.e., given $(X_{-\infty}^0, Y_{-\infty}^0)$, one can determine the entire sequence $Y_{-\infty}^{\infty}$. Hint: Use recurrence of random walk on \mathbb{Z} .
- (c) Conclude that $h((X_n, Y_n)_{-\infty}^{\infty}) = \log 2$.
- (d) Show that the process above nevertheless has trivial tail.

Remark: This process turns out to be a process with trivial tail that is not isomorphic to a product measure, although this is not trivial to prove. An earlier example was constructed by Ornstein more explicitly.

- (25) A factor map $\pi : X \to Y$ between measure preserving systems is called bounded-to-1 if $|\pi(y)^{-1}| < M$ for some constant M and a.e. $y \in Y$, and finite-to-1 if $\pi^{-1}(y)$ is finite for a.e. $y \in Y$. Show in both cases that h(X) = h(Y) (begin with the bounded-to-1 case, which is easier).
- (26) Let $x \in A^{\mathbb{N}}$ (A finite). Let

$$L_N(x) = \{ w \in A^N : w = x_i \dots x_{i+N-1} \text{ for some } i \}$$

Show that $\log L_N$ is subadditive and that $\lim_{N\to\infty} \frac{1}{N} \log L_N$ exists. Show that this limit is the topological entropy of the orbit closure of x under the shift. Formulate an analogous statement for $x \in A^{\mathbb{Z}}$.

- (27) Show that the Morse system has zero topological entropy (the Morse system is defined as follows. Let $\tau : \{0,1\}^* \to \{0,1\}^*$ be defined by $\tau(0) = 01, \tau(1) = 10$, and τ is extended pointwise to words, $\tau(w_1 \dots w_k) = \tau(w_1)\tau(w_2)\dots\tau(w_k)$. Then $\tau^{n+1}(0)$ extends $\tau^n(0)$ for all n and thus there is a limiting infinite word $w \in \{0,1\}^{\mathbb{N}}$ such that $w_1 \dots w_{2^n} = \tau^n(0)$. The morse system is the orbit closure of x under the shift.
- (28) A topological system (X,T) is called rigid if there is a sequence $n_k \to \infty$ such that $T^{n_k}x \to x$ for every $x \in X$.
 - (a) Show that if T is a transitive isometry then it is rigid (in fact one can have $T^{n_k}x \to x$ uniformly).
 - (b) Show that rigid systems have entropy 0.
- (29) Let $A \in GL_n(\mathbb{Z})$ be an invertible integer matrix. Let A act on the *n*dimensional torus $\mathbb{R}^n/\mathbb{Z}^n$ by $T_A x = Ax \mod 1$. Let $\lambda_1, \ldots, \lambda_n$ be the complex eigenvalues of A repeated with multiplicity and ordered such that $|\lambda_1| \geq \ldots \geq |\lambda_k| > 1 > |\lambda_{k+1}| \geq \ldots \geq |\lambda_n|$. Show that

$$h_{top}(T_A) = \sum_{i=1}^k \log |\lambda_i| = -\sum_{i=k+1}^n \log |\lambda_i|$$

(30) For a topological system (X,T) and metric d on X, let

$$\overline{d}_n(x,y) = \frac{1}{n} \sum_{i=0}^{n-1} d(T^i x, T^i y)$$

Let

$$\overline{h}_{top}(T) = \lim_{\varepsilon \to 0} \limsup_{n \to \infty} \frac{\log cov(X, \overline{d}_n, \varepsilon)}{n}$$

Show that $\overline{h}_{top}(X) = h_{top}(X)$.

(31) Prove Abramov's entropy formula for induced maps (see question 1 for definition): If T_A is the induced map on A then $h_{\mu_A}(T_A) = h_{\mu}(T)/\mu(A)$.