
Review Problems in Dynamical systems and Entropy

These problems are meant to help review the material.
(1) Let (X,B, µ, T ) be an ergodic measure oreserving system. Let A ⊆ X with

µ(A) > 0.
(a) Show that there is a measurable set A0 ⊆ A with µ(A0) > 0 and such

that every x ∈ A0 returns to A0 infinitely often.
(b) Let r(x) = min{n > 0 : Tnx ∈ A0} and define S : A0 → A0 to be the

map x 7→ T r(x)x. Show that S is measure rpreserving and ergodic
Note: S is defined almost everywhere on A and is sometimes called the

induced map of A.
(2) Let (X,B, µ, T ) be a measure preserving system. Let f : X → {0, 1, 2, 3, . . .}

be a measurable function with
´
fdµ <∞. Let

Xf = {(x, n) : 0 ≤ n ≤ f(x)}
This is the “region under the graph of f ” . On Xf let µf be the “normalized
measure under the graph” of f , that is, the unique measure such that
µf (A × {n}) = µ(A)/

´
fdµ for A ⊆ f−1({n}). Finally let Tf : Xf → Xf

be the map

Tf (x, n) =

{
(x, n+ 1) if n < f(x)
(Tx, 0) n = f(x)

Show that (Xf , µfTf ) is measure preserving, it is ergodic if and only if
(X,µ, T ) is, and that (X,B, µ, T ) is the induced map (in the sense of the
previous peoblem) on the set X × {0} ⊆ Xf .

(3) In a topological system (X,T ), show that if x, y are asymptotic (i.e. d(Tnx, Tny)→
0) and x is generic for a measure µ, then so is y.

(4) Construct a point x ∈ {0, 1}N that is not generic for any measure (with
respect to the shift).

(5) Show that in {0, 1}Z with the shift, the non-generic points form a dense Gδ.
(6) Show that every shift-invariant measure µ on {0, 1}Z has a generic point

(for ergodic measures this is immediate, since µ-a.e. point is generic for µ.
The point is to deal with non-ergodic measures).

(7) Let T : X → X be a continuous map of a compact metric space acting
ergodically on a measure µ. Suppose that there is a nonwhere-dense set
X0 ⊆ X of positive measure. Show that the ergodic averages of continu-
ous functions cannot converge uniformly (i.e. the system is not uniquely
ergodic).

(8) Give an example of a non-compact, locally compact X and continuous
T : X → X without invariant probability measures.

(9) Show that the set of ergodic measures for X = {0, 1}N and the shift is dense
in PT (X) (Hint: consider periodic sequences).

(10) Let (X,F , µ, T ) be a measure preserving system. Let F0 ⊆ F1 ⊆ . . . ⊆ F be
invariant sub-σ-algebras (factors) and suppose that X,Fn, µ, T ) is ergodic
for all n. Suppose σ(F0,F1, . . .) = F . Show that (X,F , µ, T ) is ergodic.
Show the same with the word “ergodic” replaces by “mixing”.

(11) (*) Let ([0, 1], Borel, µ, T ) be a measure preserving system (you can assume
ergodic if you want). Show that

lim inf
n→∞

n · |x− Tnx| ≤ 1
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a.e. (this is a quantitative form of the Poincare recurrence theorem).
(12) Let (X,B, µ, T ) be an invertible measure-preserving system. Let λ ∈ S1 ⊆

C and let U : L2 → L2 be the unitary operator U = λT . Describe the limit
of the “ergodic averages” 1

N

∑N−1
n=0 U

nf for f ∈ L2.
(13) Let X = {z ∈ C : |z| ≤ 1} with normalized area measure µ, and let

T (reiθ) = rei(θ+r).
(a) Show that T preserves µ.
(b) Is µ ergodic? Describe its ergodic components.
(c) What is the pure-point spectrum of T?

(14) Let (X,B, µ, T ) be an invertible measure preserving system. Let t0 > 0 and
define a new map S : X × [0, 1)→ X × [0, 1) by

St0(x, t) = (T [t+t0]x, {t+ t0})

(a) Show that this map preserves ν = µ×Leb|[0,1). Show that StSs = St+s,
so in fact we have an action of R on X × [0, 1).

(b) Determine when St0 is ergodic. Describe its ergodic components and
its spectrum.

Remark: compare to problem 2.
(15) Construct a probability vector p = (p1, p2, . . .) such that H(p) =∞.
(16) Prove that for any finite-valued random variablesX,Y, Z we haveH(X|Y, Z) ≥

H(X|Y ) (we used this repeatedly in class, but I don’t think we proved it.
Hint: consult the proof that H(X|Y ) ≥ H(X)). Show the same when the
conditioning is on σ-algebras.

(17) Prove that the product measure µ = (1/2, 1/2)Z is the only measure on
{0, 1}Z with hµ(S) = 1 (all others are ≤ 1).

(18) Use the previous question to conclude that if π : {0, 1}Z → {0, 1}Z is a
continuous map satisfing πS = Sπ (S the shift), then if π is 1-1, it must be
onto.

(19) Show that hµ×ν(T × S) = hµ(T ) + hν(S).
(20) Prove that if (X,B, µ, T ) is mixing then for any non-trivial partition α of

X, there is a sequence nk →∞ such that 1
NH(

∨N
k=1 T

−nkα)→ 1.
(21) Let (X,B, µ, T ) be a measure preserving system. Define a pseudo-metric

between partitions by d(A,B) = H(A|B)+H(B|A). Show that the entropy
function A 7→ hµ(T,A) is continuous in the space of finite partitions.

(22) Give an example of an ergodic measure preserving system with infinite
entropy, and conclude that it does not have a generating partition.

(23) Show that if (X,T ) is a topological system with a unique attracting fixed
point (i.e. Tnx→ x0 = Tx0) for some x0 and all x ∈ X), then htop(T ) = 0.

(24) Let X = {±1}Z × {±1}Z, and define the map X → X by T (x, y) =
(Sx, Sx(0)y) where S : {±1}Z → {±1}Z is the shift. Let µ = µ0 × µ2

where µ0 = µ1 = (1/2, 1/2)Z. This system is called the “T, T−1”. It is also
called “random walk in random scenery”, because the first sequence x can
be thought of as the increments of a symmetric random walk on the inte-
gers; as time goes by we shift the x sequence, producing these increments,
and shift the y-sequence either forward or backward according to this in-
crement. Thus, if we view only they sequence, we see a random sequence
of digits being shifted left and right randomly.
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(a) Show that (X,T, µ) is measure-preserving (this is an example of a skew
product”).

(b) Consider the random variablesXn, Yn : X → {0, 1} given byXn(x, y) =
xn and Yn(x, y) = yn and consider the process (Xn, Yn)

∞
n=−∞. Show

that a.e., given (X0
−∞, Y

0
−∞), one can determine the entire sequence

Y∞−∞. Hint: Use recurrence of random walk on Z.
(c) Conclude that h((Xn, Yn)

∞
−∞) = log 2.

(d) Show that the process above nevertheless has trivial tail.
Remark: This process turns out to be a process with trivial tail that is

not isomorphic to a product measure, although this is not trivial to prove.
An earlier example was constructed by Ornstein more explicitly.

(25) A factor map π : X → Y between measure preserving systems is called
bounded-to-1 if |π(y)−1| < M for some constant M and a.e. y ∈ Y , and
finite-to-1 if π−1(y) is finite for a.e. y ∈ Y . Show in both cases that
h(X) = h(Y ) (begin with the bounded-to-1 case, which is easier).

(26) Let x ∈ AN (A finite). Let

LN (x) = {w ∈ AN : w = xi . . . xi+N−1for some i}

Show that logLN is subadditive and that limN→∞
1
N logLN exists. Show

that this limit is the topological entropy of the orbit closure of x under the
shift. Formulate an analogous statement for x ∈ AZ.

(27) Show that the Morse system has zero topological entropy (the Morse sys-
tem is defined as follows. Let τ : {0, 1}∗ → {0, 1}∗ be defined by τ(0) =
01, τ(1) = 10, and τ is extended pointwise to words, τ(w1 . . . wk) =
τ(w1)τ(w2) . . . τ(wk). Then τn+1(0) extends τn(0) for all n and thus there
is a limiting infinite word w ∈ {0, 1}N such that w1 . . . w2n = τn(0). The
morse system is the orbit closure of x under the shift.

(28) A topological system (X,T ) is called rigid if there is a sequence nk → ∞
such that Tnkx→ x for every x ∈ X.
(a) Show that if T is a transitive isometry then it is rigid (in fact one can

have Tnkx→ x uniformly).
(b) Show that rigid systems have entropy 0.

(29) Let A ∈ GLn(Z) be an invertible integer matrix. Let A act on the n-
dimensional torus Rn/Zn by TAx = Ax mod 1. Let λ1, . . . , λn be the com-
plex eigenvalues of A repeated with multiplicity and ordered such that
|λ1| ≥ . . . ≥ |λk| > 1 > |λk+1| ≥ . . . ≥ |λn|. Show that

htop(TA) =

k∑
i=1

log |λi| = −
n∑

i=k+1

log |λi|

(30) For a topological system (X,T ) and metric d on X, let

dn(x, y) =
1

n

n−1∑
i=0

d(T ix, T iy)

Let

htop(T ) = lim
ε→0

lim sup
n→∞

log cov(X, dn, ε)

n

Show that htop(X) = htop(X).
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(31) Prove Abramov’s entropy formula for induced maps (see question 1 for
definition): If TA is the induced map on A then hµA

(TA) = hµ(T )/µ(A).


