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1 Dynamical systems, orbits, and subsystems

1.1 De�nitions

Dynamical systems theory deals with mathematical models of change, ones that evolve in an
orderly way over time. By this we mean that there is some law governing the system's evolution;
the law may be concrete, as in the theory of mechanics, where it is given by an explicit di�erential
equation, or more abstract.

Topological dynamics is one of the abstract branches of the theory. All that it assumes is
that the evolution is continuous, and that the state space is compact.

De�nition 1.1. A (topological)1 dynamical system is a pair (X,T ) where

� X 6= ∅ is a compact metric space (called the phase space or state space).

� T : X → X is a continuous map.

When T is invertible, we say that (X,T ) is an invertible dynamical system.
We often refer to the system by X or T , depending on the context. We denote the metric

generically by d(·, ·), or by dX(·, ·) when we want to emphasize the underlying space.
Given T : X → X and n ∈ N, we de�ne the n-th iterate of T by

Tn = T ◦ T ◦ T ◦ . . . ◦ T︸ ︷︷ ︸
n

Also T 0 = idX , and if T is invertible, T−n = (T−1)n = (Tn)−1. The iterates of T form a
semi-group or group acting on X.

The (forward) orbit of x ∈ X is the sequence

OT (x) = (Tnx)∞n=0

When T is invertible, we de�ne the two-sided orbit similarly, by

O±T (x) = (Tnx)∞n=−∞

Although the theory for invertible and non-invertible systems is not identical, the di�erences
are minor. We shall usually present only one of the versions and leave the other to the reader.

Such systems arise naturally in classical physics, where each point in the phase space X
represents a world state; for example, to describe a system with some number of particles
(atoms or planets!), one can take X ⊆ RN for some large N , with each state x ∈ X representing
the locations and momenta of the objects. A di�erential equation then de�nes the evolution: for
each initial x0 ∈ X, it determines a unique curve x(t) : R→ X with x(0) = x0 and so that x(t)
is the state of the system at time t. From this, we obtain a map T : X → X, given by evolving
the system one time step: from initial state x we set Tx = x(1), the location at time t = 1 of
the evolution x(t) of the system started from x. Then Tnx = x(n), so the �orbit� of x describes

1The word �topological� refers to the fact that X is a topological space and T is continuous. Metrizability is
not needed for many of the results below but we will assume it for convenience. The metric itself will not matter
very much and its role is to give meaning to convergence, continuity etc. Thus, in almost all occurrences, it can
safely be replaced with any equivalent metric.
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the long term behavior of the system. Under mild conditions, the map T is continuous. Also,
often X can be taken to be compact; although in our example we took X = RN , if we restrict
to con�gurations of energy ≤ C for some constant C, this is often is a closed bounded region of
RN . Then (X,T ) is a dynamical system in the sense of de�nition 1.1.

There are a number of reasons for adopting our more abstract viewpoint. First, one does
not always know the law governing the evolution of a system. So one would like to develop tools
which apply in general. Surprisingly, it turns out that there is a lot that one can say.

Second, even when the law is explicitly known, or conjectured, this information rarely allows
for long-term analysis of the system. In fact, interest in the abstract dynamics began from
the failure of attempts to predict the long-term behavior of the motion of the planets in the
solar system. Although the law of gravity was well understood, the problem withstood exact
analysis. It was Poincare who, from general considerations which ignore the precise law of
gravity, succeeded in make progress on the problem.

Finally, as is often the case in mathematics, the abstract dynamical formalism turns out to
apply to problems beyond the original physical ones. We shall see that, for example, certain
problems in combinatorics and diophantine approximation can be stated and solved dynamically.

1.2 The behavior of orbits, and �rst examples

A large part of the theory of dynamical systems concerns the long-term behavior of orbits. We
introduce the following de�nitions.

De�nition 1.2. Let (X,T ) be a dynamical system.

� x ∈ X is a �xed point (of T ) if Tx = x.

� x ∈ X is periodic (under T ) if there exists p ≥ 1 such that T px = x. The least such p is
called the period of x.

In particular a �xed point of T p is a periodic point of T .

� x ∈ X is recurrent (under T ) if there exists nk →∞ such that Tnkx→ x.

� x ∈ X is transitive if it has a dense (forward) orbit under T , i.e. if OT (x) is dense in X.
In the invertible case we will speak two-sided transitivity when O±T (x) is dense.

Not all of these types of behavior are found in every system, and when they are present,
they can coexist in complicated ways. This is best demonstrated with some examples.

Example 1

Let

X = [0, 1]

Tx = x2

This is a homeomorphism. Observe:

1. The points 0 and 1 are �xed points and they are the only ones.

(a) Every x ∈ (0, 1) satis�es xn → 0.
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(b) In particular, 0 and 1 are the only recurrent points. However, both of them are limits
of non-recurrent points.

(c) There are no points with dense orbit.

Example 2

Let

X = [0, 1]

Tx = 10x mod 1

This map isn't continuous, but we can make it continuous by identifying the points 0, 1, or
equivalently, taking X = R/Z. We shall very frequently make this identi�cation: formally we
work in R/Z, but continue to represent points in R/Z by their lift to [0, 1). Note that

Tnx = 10nx mod 1

Also observe that T is onto but is not injective (for example, T (0) = T (0.1) = T (0.2) = 0). So
T is not invertible

1. If x = s/t, s, t ∈ N, and gcd(10, t) = 1, then there exists n such that 10n = 1 mod t, hence

Tn(s/t) = 10ns/t = s/t

and s/t is a periodic point.

It it not hard to see that there exist points with arbitrarily high period (e.g. 1/(10N +1)).

Also, for every prime p 6= 2, 5, the points k/p are periodic for all 0 ≤ k < p.

It follows easily that every point x ∈ X is the limit of periodic points, i.e.., the periodic
points are dense.

In particular, the set of points with non-dense orbit is dense.

2. If x is irrational, then Tnx 6= x; for otherwise, 10nx = x mod 1, so there is an integer N
with 10nx = x+N , and x = N/(10n − 1) ∈ Q, contrary to assumption.

Thus, the non-periodic points are also dense and every point is the limit of non-periodic
points.

3. Do there exist transitive points? (points with dense orbit?) Let us describe a speci�c
point with this property:

c = 12345678910111213141516 . . .

i.e. the number whose decimal expansion is the concatenation of the decimal expansions
of the integers, in the usual order. This is known as the Champernown number,
and its orbit is dense under T . Indeed, for every sequence a = a1 . . . aN of decimal
digits, there is an N such that a appear in position n in the expansion of x. Then
10nc mod 1 = 0.a1a2 . . . aN . . .. This implies that every number a = 0.a1a2a3 . . . in [0, 1]
can be approximated arbitrarily well by elements of OT (c), so the orbit of x is dense.
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4. In fact, if D ⊆ [0, 1] is the set of points with dense T -orbit, then D itself is dense. Indeed,
it is not hard to see that if x ∈ D then OT (x) ⊆ D. This follows from a general fact that
we will see in the exercises, but let us give a concrete argument: Fix x ∈ [0, 1]. Given N
consider the point

xN = 0.x1 . . . xN12345678910111213 . . .

Clearly xN → x. On the other hand, TNx = c so for n ≥ 0 we have Tnc = TN+nx, and
hence OT (c) ⊆ OT (xN ), so xN has dense orbit.

5. It is easy to �nd points that are not recurrent. For example if a1 . . . aN 6= 0 . . . 0 is a block
of decimal digits then 0.a1 . . . aN0000 . . . is not recurrent.

The example above was an endomorphism of a compact group, a class of maps that contains
many other interesting examples. For example, a d×d integer matrix A acts on the d-dimensional
torus Td = Rd/Z, by multiplication modulo 1. This action shares many features with the
example above. For instance, the periodic points are dense, since any point in Qd/Zd has �nite
orbit, and if detA is relatively prime to the denominators, then the point will be periodic.
Surely, there are also di�erences: the matrix A in general will not expand Td, and even if it does
the expansion rate is not constant. We also lack something analogous to decimal expansion that
would give us a more concrete understanding of the dynamics and allow us to construct points
with speci�ed behavior.

We will return to such examples in Section 3, where we shall see that a symbolic represen-
tation often does exist,

Example 3

Given α ∈ R, consider the system

X = R/Z ∼= [0, 1)

Rαx = x+ α mod 1

Note that
Rnαx = x+ nα mod 1

Then Rα is a homeomorphism of X. In fact, R/Z is group under addition modulo 1, and Rα is
the translation by the element α ∈ R/Z.

The behavior of orbits under Rα depends strongly on the nature of α, speci�cally on whether
α is rational.

Indeed, if α ∈ Q, then every point is periodic! Indeed if α = s/t for some s ∈ Z, t ∈ N, then

Rtαx = x+ tα = x mod 1

In this case, every point is recurrent but no point has dense orbit.
On the other hand, if α ∈ R \Q then no point is periodic, since if Rpαx = x then x+ pα =

x mod 1, meaning that for some N ∈ N we have x + nα = x + N , and hence x = N/n ∈ Q,
contrary to assumption. As for density, we have the following:

Theorem 1.3. If α ∈ R\Q then every point in R/Z has dense orbit under Rαx = x+α mod 1.
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Proof. We parameterize R/Z as [0, 1). It su�ces to prove that nα mod 1 is dense in [0, 1), since
then for any x ∈ [0, 1), for any y ∈ [0, 1) we have y−x = limk→∞ nkα mod 1 for some (nk) ⊆ N,
and then

Rnkα x = x+ nkα→ x+ (y − x) = y mod 1

showing that y ∈ ORα(x). Since y was arbitrary this shows that x has dense orbit.
Fix N ∈ N and consider the intervals [i/N, (1 + i)/N) for i = 0, 1, . . . , N − 1. By the

pigeonhole principle, there exist 0 ≤ `1 < `2 < N+1 such that `1α, `2α fall in the same interval,
so |(`2− `1)α| < 1/N . Writing β = (`2− `1)α it follows that every two numbers in the sequence
β, 2β, 3β, [1 + 1/β]β are within 1/N of each other and similarly for the endpoint. Therefore
every point in [0, 1) is within 1/N of one of these points. But kβ = k(`2−`1)α ∈ {nα : n ∈ N}.
So we have shown that {nα} is dense modulo one.

Corollary 1.4. For every α, every x ∈ R/Z is recurrent under Rα.

Proof. For α rational all points are periodic so the conclusion is obvious. Otherwise, we have seen
that nα is dense in R/Z so nkα → 0 for some (nk) ⊆ N. Clearly nk →∞, since nα 6= 0 mod 1
for all n ∈ N. Then given x ∈ R/Z we have

Rnkα x = x+ nα→ x mod 1

so x is recurrent.

This example raise the following natural question: For a set S ⊆ N of natural numbers and
α an irrational number, when is

Sα = {sα : s ∈ S}
dense modulo one?

We have just answered the question when S = N. What about sequences of the form
S = {p(n) : n ∈ N}, where p(t) is a polynomial? Then (p(n)α)∞n=1 is not the orbit of a map
on R/Z, at least not in any obvious way. Nonetheless, there is a way to view it in a dynamical
context. Using dynamical ideas, later on we will prove:

Theorem 1.5 (Hardy-Littlewood). If α /∈ Q and p is a polynomial with an irrational non-
constant coe�cient, then (p(n))∞n=1 is dense modulo 1.

Beyond polynomials, one can ask about sequences of the form S = {an : n ∈ N}. We have
already answered this question: For S = {10n}∞n=1, then there exist irrational α such that Sα
is not dense, and also irrational α for which Sα is dense. Our argument extends to all sets of
the form {kn : n ∈ N} for a �xed 2 ≤ k ∈ N.

There exist sequences lying between the polynomial and exponential. A famous example is
S = {2k3` : k, ` ∈ N}. One can show that, when placed in increasing order S = {n1 < n2 <
. . .}, one has nk+1/nk → 1 (we shall prove this later). Such a sequence is called non-lacunary
(a lacunary sequence is one for which lim inf nk+1/nk > 1). On the other hand S is not a
polynomial set.

One may also notice that S = {2k3` : k, ` ∈ N} is a semigroup under multiplication, and
Sx mod 1 is the orbit of the joint action of two commuting maps of R/Z, the map x 7→ 2x and
x 7→ 3x. Each of these maps separately has many non-dense, non-periodic, even non-recurrent
orbits. Remarkably, it turns out that together they behave much more like the polynomial case:

Theorem 1.6 (Furstenberg). If α is irrational then Sα is dense modulo one.

We will prove this in Section ??.
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Example 4

Let Λ be a �nite set which we view as an alphabet of symbols, and let ΛN or ΛZ denote the space
of sequences (one- or two-sided) over Λ. These are compact metrizable spaces in the product
topology (viewing Λ as a discrete set), and we can de�ne the shift map on it by

(Sx)n = xn+1

This maps �shifts sequences to the left�, and one can check that it is a continuous onto map of
ΛN and ; in the the latter case is also invertible. The dynamical systems (ΛN, S) and (ΛZ, S)
are called the one-sided and two-sided full shift, respectively.

These systems are a rich source of examples. they also arise in applications as a natural
compacti�cation of discrete objects. We give two examples.

First, suppose we are modeling con�gurations of repelling particles arranged on the line. We
might then denote an empty spot by 0 and an occupied one by 1. Then repulsion would mean
that no two particles can be adjacent, so we are looking at words which do not contain the
sub-word 11. Compactifying the space of �nite words, we arrive at the set of in�nite words

X = {x ∈ {0, 1}Z : x does not contains the subword 11}

This is a compact subset of the full shift {0, 1}Z and evidently is invariant under S. So (X,S) is
a dynamical system. Similarly, repulsion could be understood in the average sense; for example,
that no �nite segment of a word contains more than 1/3 of its sites occupied. We would then
get a di�erent dynamical system.

Second, any subset of A ⊆ Z can be identi�ed with the sequence 1A ∈ {0, 1}Z. We can think
of it as a point in the full shift. Often, combinatorial properties of A translate to properties of
this point, or points in its orbit, or in its orbit closure. For example, if {n, n+ 1} 6⊆ A for all n,
then 1A its entire orbit are contained in the compact set X above. We shall see later that this
point of view leads to deep combinatorial results.

Summary

Let us collect some of the phenomena we have seen in these examples:

� A periodic/recurrent/transitive point can be a limit of points with di�erent properties.

� A system may, or may not, contain periodic points (it might happen that all point or no
points are periodic, and when they exist, the periodic points may be dense, or not).

� A system may, or may not, contain transitive points (also, all points might be transitive,
or none. When they exist they may form a dense set).

This hints at the complexity that we can expect from dynamical systems in general. But there
is also order. For instance, in all the examples we saw so far, there existed recurrent points, and
we shall soon see that this is a general phenomenon.

1.3 Subsystems, minimality and recurrence

So far we have considered individual orbits. We now shift perspective and consider invariant
sets.
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De�nition 1.7. A subsystem of a dynamical system (X,T ) is a closed, non-empty subset
Y ⊆ X with TY ⊆ Y (if T is invertible, the condition becomes TY = Y ). Such Y is also called
an invariant (closed) subset of X.

Note that if Y ⊆ X is a subsystem of (X,T ), then (Y, T |Y ) is a dynamical system (usually
we just write T , instead of T |Y ). Also note that there are many non-closed invariant subsets,
but we shall always mean closed ones unless otherwise stated.

Examples and basic properties

1. X is a subsystem of (X,T ).

2. If x0 ∈ X is a �xed point of T then {x0} is a subsystem. More generally, if x0 is periodic
with period p, then {x0, Tx0, . . . , T

p−1x0} is a subsystem.

3. The system X = {x ∈ {0, 1}Z : x does not contain the word 11} with the shift map S, is
a subsystem of the full shift.

4. Given x ∈ X, its orbit closure Y = OT (x) is a subsystem, and furthermore, if x is
recurrent, then T is surjective on Y .

To see this note that the set is closed by de�nition, non-empty because x ∈ Y , and invariant
because if y ∈ Y then y = limTnKx for some sequence (nk) ⊆ N, so by continuity of T ,

Ty = T ( lim
n→∞

Tnkx) = lim
n→∞

Tnk+1x ∈ Y

If x is recurrent then we can assume that nk ≥ 1, since otherwise y = x, and we may by
recurrence assume even that nk → ∞. Then, passing to a subsequence if necessary, we
can assume that Tnk−1x→ z ∈ Y , so again by continuity of T we have

y = lim
n→∞

TTnkx = T
(

lim
n→∞

Tnk−1x
)

= Tz

which gives surjectivity of T : OT (x)→ OT (x).

Note that if x0 is periodic with period p then its orbit OT (x0) = {x0, Tx0, . . . , T
p−1x0} is

already closed so this is the orbit closure.

5. When T is invertible, O±T (x) is T and T−1 invariant, and T is always bijective on it.

6. If Yi ⊆ X are subsystems for i ∈ I, then Y =
⋂
i∈I Yi is a subsystem. It is closed as an

intersection of closed sets, and if y ∈ Y then for each i we have y ∈ Yi so Ty ∈ Yi, showing
that Ty ∈ Y .

De�nition 1.8. A dynamical system (X,T ) isminimal if it contains no non-trivial subsystems.

Lemma 1.9. A system (X,T ) is minimal if and only if every orbit is dense.

Proof. For x ∈ X, since OT (x) ⊆ X is a subsystem, minimality implies OT (x) = X for all
x ∈ X, so the orbit of x is dense.

Conversely, if every orbit is dense and Y ⊆ X is a non-empty subsystem, take y ∈ Y . Then
OT (y) ⊆ Y (because TY ⊆ Y ), so OT (y) ⊆ Y (because Y is closed), and we get X = OT (y) ⊆
Y ⊆ X, so Y = X.
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Theorem 1.10. Every dynamical system has a minimal subsystem.

Proof. Consider the family of set of subsystems ofX, partially ordered by inclusion. Using Zorn's
lemma, �nd a maximal chain {Yi}i∈I in this family (so {Yi} is totally ordered by inclusion and
it cannot be extended to a larger such family). Now Y =

⋂
i∈I Yi is a non-empty subsystem (a

subsystem because it is the intersection of subsystems; non-empty because {Yi}, being totally
ordered by inclusion, has the �nite intersection property). Y is minimal because if Y ′ ⊆ Y
we a non-trivial subsystem, then {Yi}i∈I could be enlarged by adding Y ′ to it, contradicting
maximality.

Lemma 1.11. If (X,T ) is minimal, then every point is recurrent.

Proof. Let x ∈ X. If x is a periodic point, clearly it is recurrent.
Otherwise, Tnx 6= x for all n ≥ 1. By minimality, the orbit of y = Tx is dense, so x =

limk→∞ Tnky for some (nk) ⊆ N. Since none of Tnky is equal to x we must have nk →∞, and
then x = limk→∞ Tnk+1x, showing that x is recurrent.

Corollary 1.12 (Birkho�'s recurrence theorem). Every dynamical system contains recurrent
points.

We can use this theorem to give another, more abstract proof that every point in R/Z is
recurrent under Rα. For by the last result there is some x0 ∈ R/Z that is recurrent under Rα,
so Rnkα x0 → x0 with nk → ∞. Notice that RαRβx = RβRαx for all x, α, β. Thus, if x be any
other point, then

Rnkα x = Rnkα Rx−x0
(x0)

= Rx−x0
Rnkα x0

→ Rx−x0
x0

= x

1.4 Uniformly recurrent points

In this section, we ask: when is an orbit closure minimal? First, we give another characterization
of minimality.

Lemma 1.13. (X,T ) is minimal if and only if for every open U 6= ∅ there is an N ∈ N such

that X =
⋃N
n=1 T

−nU .

Proof. Suppose (X,T ) is minimal and let U 6= ∅ be open. The orbit of any x ∈ X is dense by
minimality, so Tnx ∈ U for some n ≥ 0; equivalently x ∈ T−nU , so x ∈

⋃∞
n=0 T

−nU . Since
X was arbitrary, this means that the union covers X. By compactness �nitely may of the sets
already cover X.

Conversely, let x ∈ X, it is enough to show that OT (x) is dense (if every orbit is dense,
(X,T ) is minimal). Density of the orbit means that for every U 6= ∅ open there is an n such
that Tnx ∈ U . So given U we must show that x ∈

⋃∞
n=1 T

−nU , which follows from the
assumption that the union is all of X.

De�nition 1.14. A set E ⊆ N or E ⊆ Z is syndetic if it has bounded gaps, i.e. if there is a
C ≥ 1 such that [a, a+ C] ∩ E 6= ∅ for every a ∈ R.

11



Given a dynamical system (X,T ), a point x ∈ X and a set U ⊆ X we write

N(x, U) = {n ∈ N : Tnx ∈ U}

Lemma 1.15. If (X,T ) is minimal then N(x, U) is syndetic for every x ∈ X and every open
set ∅ 6= U ⊆ X.

Proof. Suppose X is minimal. Let N be such that X ⊆
⋃N
i=0 T

−iU . Then for every k, we know

that T kx ∈
⋃N
i=0 T

−iU , i.e. {i, i+ 1, . . . , i+N} ∩N(U, x) 6= ∅. This shows that every interval
of length N intersects N(x, U), so it is syndetic.

There is a converse, with even weaker hypotheses: If N(x, U) 6= ∅ for all x, U as in the
lemma, then every x has dense orbit, so X is minimal by Lemma 1.9.

De�nition 1.16. Let (X,T ) be a dynamical system. A point x ∈ X is uniformly recurrent
if N(x, U), is syndetic for every open set U ⊆ X containing x.

Proposition 1.17. The orbit closure of x is minimal if and only if it is uniformly recurrent.

Proof. Let Y = OT (x). Suppose a Y is minimal. If U ′ ⊆ X is open and contains x, certainly
U = Y ∩ U ′ is open in Y , and also {n ∈ N : Tnx ∈ U} = {n ∈ N : Tnx ∈ U ′} (because Y is
invariant). By minimality the former set is syndetic, so the latter is also.

Conversely, suppose x is uniformly recurrent. Let Y = OT (x), and use Theorem 1.10 to �nd
a minimal system Z ⊆ Y . Fix z ∈ Z. We will show that x ∈ OT (z). This implies that x ∈ Z so
OT (x) = Z is minimal.

Let ε > 0. Since n is uniformly recurrent, N(x,Bε(x)) is syndetic, so there exists ` ≥ 1
such that N(x,Bε(x)) ∩ [i, i + `] 6= ∅ for all i. Using continuity of T , choose δ > 0 such that
d(w,w′) < δ implies d(Tnw, Tnw′) < ε for 0 ≤ n ≤ `.

Now, z ∈ OT (x), so there is an n0 with d(Tn0x, z) < δ. Choose 0 ≤ n1 ≤ ` such that
n0 + n1 ∈ N(x,Bε(x)), so that

d(Tn1Tn0x, x) = d(Tn0+n1x, x) < ε

but also, since d(Tn0x, z) < δ we have (by choice of δ):

d(Tn1Tn0x, Tn1z) < ε

Combining these we have
d(Tn!z, x) < 2ε

Summarizing, for all ε > 0 we found n1 such that d(Tn1z, x) < 2ε, so x ∈ OT (z), as claimed.

1.5 Problems

Let (X,T ) be a dynamical system.

1. Show that if x has dense orbit in X and x is not an isolated point, then x is recurrent,
and every y ∈ OT (x) has a dense orbit.

2. Show that if y has dense orbit and y ∈ OT (x) then x has dense orbit.

12



3. If y ∈ OT (x), does it follow that x ∈ OT (y)?

4. Let T : X → X be a continuous map of a metric space. Show that
⋂∞
n=1 T

n(X) is a
subsystem of X. (This is only interesting when T is not onto).

5. Let D = {z ∈ C : |z| ≤ 1} denote the closed unit disc. Let T : D → D denote the map
that rotates the circle of radius r by angle r: that is, T (reiθ) = rei(θ+r). Describe the
periodic points and minimal subsets of (D,Tα).

6. Show that if x ∈ R/Z is irrational and Tx = 10x mod 1, then OT (x) \OT (x) is in�nite.

7. Let X = R2/Z2 denote the two-dimensional torus and let α = (α1, α2) ∈ X. Show that
Rαx = x + α is minimal if and only if α1, α2 are rationally independent, i.e. if the only
integer solution of α1x+ α2y = 0 is x = y = 0.

De�nition 1.18. Let (X,T ) be a dynamical system. A set A ⊆ X is wandering if A∩T−nA =
∅ for all n ≥ 1.

We say that (X,T ) is non-wandering if no non-empty open set is wandering.

8. Show that every invertible system (X.T ) decomposes uniquely into a disjoint union (
⋃∞
n=−∞ T−nU)∪

Y where U is and Y ⊆ X is a non-wandering subsystem.

9. Let (X,T ) be a non-wandering dynamical system. Show that the set of recurrent points
is a dense Gδ subset of X.

Hint: Let ε > 0. Show that the set

Cε = {x ∈ X : ∃n ∈ N : d(Tnx, x) < 2ε}

contains a dense open set by showing that for every ball B of radius ε > 0, the set
A = B \ ∪∞n=1T

−nB has empty interior.
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2 Isometries, equicontinuity, and group translations

Our goal in this section is to study isometries, which are perhaps the simplest maps in the
context of metric spaces. As a motivating example, it is good to keep in mind the rotations
Rαx = x + α mod 1 of R/Z that we encountered in the last chapter. In this example we have
several structures simultaneously:

� Rα is an isometry in the induced metric metric from R.

� R/Z is an abelian group with continuous group operations, and Rα is addition by a con-
stant group element.

And on the dynamical side, we also saw that

� Either the system is minimal (when α /∈ Q), or else it is the disjoint union of periodic
orbits, each of which is itself a minimal subsystem, and a coset of a �nite subgroup of
R/Z.

We will soon see that the coexistence of these properties is not a coincidence, and that, in fact,
all isometries share them.

In this section, all dynamical systems are invertible.

2.1 Isometries and equicontinuous systems

De�nition 2.1. An isometry f between metric spaces (X, dX) and (Y, dY ) is a distance-
preserving function f : X → Y , that is:

dY (f(x), f(x′)) = dX(x, x′) for all x, x′ ∈ X

A dynamical system (X,T ) is isometric if T : X → X is an isometry.

Lemma 2.2. An isometry T : X → X of a compact metric space is invertible.

Proof. Since T preserves distances it is injective, so we must show that it is onto. If TX 6= X
then we can take x0 ∈ X \ TX. Setting δ = d(x0, TX) we note that d(T 2x0, Tx0) ≥ δ because
T is an isometry, and that d(T 2x0, x0) ≥ δ because T 2x0 ∈ TX. By induction, one shows that
d(Tnx0, T

kx0) ≥ δ for all n > k, contradicting compactness.

The de�nition of an isometric system depends on the metric. Since the metric often is
not speci�ed (e.g. in product spaces, there are many natural choices), our �rst objective is to
determine when a map is equivalent to an isometry, in the sense that, by a slight change of the
metric, it becomes one. For this we require the following de�nition.

De�nition 2.3. A dynamical system (X,T ) is equicontinuous if it is invertible and the family
of maps {Tn : n ∈ Z} is equicontinuous, that is: For every ε > 0 there exists δ > 0 such that
for every x, x′ ∈ X and every n ∈ Z, if d(x, x′) < δ then d(Tnx, Tnx′) < ε.

This de�nition also uses the metric but it is a simple exercise to show that it in fact depends
only on the topology, in the following sense. Recall that two metrics d0, d1 on the same space
are equivalent if the identity map X → X is continuous both as a map from (X, d0) to (X, d1),
and as a map from (X, d1) to (X, d0). Equivalently, for every ε > 0 there is a δ > 0 such that
di(x, y) < δ implies d1−i(x, y) < ε for i = 1, 2. The a family of functions is equicontinuous for
some metric if and only if it is equicontinuous for every equivalent metric.
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Proposition 2.4. If a dynamical system (X,T ) is isometric then it is equicontinuous. Con-
versely, if it is equicontinuous, then there is an equivalent metric on X that makes T into an
isometry.

Proof. All the Tn are isometries, so the �rst direction is trivial (in fact even the larger group of
all isometries of X is equicontinuous).

Conversely, suppose that d is a metric on X and {Tn}n∈Z is equicontinuous. De�ne metric
dn on X by

dn(x, y) =
1

n

n−1∑
i=0

d(T ix, T iy)

It is clear that these are metrics. Also, it is not hard to check that the family {dn}n≥0 is
equicontinuous as a subset of C(X × X,R). Therefore by Arzela-Ascolli, there is a uniformly
converging subsequence

dnk → d∞

Since d∞ is a pointwise limit of metrics, it is clearly a pseudo-metric, i.e. it is non-negative,
symmetric, and satis�es the triangle inequality. The fact that it is positive follows from the
fact that it is equivalent to d. Let us show, for example, that for every ε > 0 there is a
δ > 0 such that if d∞(x, y) < δ then d(x, y) < ε. Indeed, by equicontinuity of {Tn}, given
ε > 0 there exists δ > 0 such that d(x, y) < δ implies d(Tnx, Tny) < ε for all n. Now, if
d∞(x, y) = lim 1

nk

∑nk
i=1 d(T ix, T iy) < δ, then clearly d(T ix, T iy) < δ for some i, so d(x, y) < ε.

In the other direction: Given ε > 0, if we choose δ > 0 so that d(x, y) implies d(Tnx, Tny) for
all n, then d(x, y) < δ implies dn(x, y) < ε for all n and hence d∞(x, y) ≤ ε.

Finally, we claim that T is an isometry with respect to d∞. Indeed,

d∞(Tx, Ty) = lim
k→∞

dnk(Tx, Ty)

= lim
k→∞

1

nk

nk−1∑
i=0

(TnkTx, TnkTy)

= lim
k→∞

1

nk

(
d(Tnk+1x, Tnk+1y) +

nk−1∑
i=0

(Tnkx, Tnky) + d(x, y)

)
= d∞(x, y)

In the last equality we used compactness of X to bound the diameter of X and thus eliminate
the �rst and last summand in the line before last.

An alternative proof, slightly shorter, can be given using the metric d′∞(x, y) = supn∈Z d(Tnx, Tny).
We now turn to the dynamics.

Lemma 2.5. If (X,T ) is an invertible dynamical system and x ∈ X is recurrent, then OT (x) =

O±T (x).

Proof. The inclusion ⊆ is trivial since OT (x) ⊆ O±T (x).

Conversely suppose y ∈ O±T (x). Given ε > 0, there is an ` ∈ Z such that T `x ∈ Bε(y). Now
let nk →∞ such that Tnkx→ x, which exists because x is recurrent. Then

T `+nkx = T `(Tnkx)→ T `(x) ∈ Bε(y)
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so for all large enough k we have T `+nkx ∈ Bε(y). Since ` + nk → ∞, we have shown that a
positive iterate of T sends x to Bε(y) so, since ε > 0 was arbitrary, y ∈ OT (x).

Proposition 2.6. If (X,T ) is an equicontinuous system then every orbit closure is minimal, X
decomposes into a disjoint union of minimal sets, and if X contains a point with a dense orbit,
then it is minimal.

Proof. The statement is clearly independent of the metric used (as long as we do not change
the topology), so by the previous proposition, we can assume that T is an isometry.

Fix x ∈ X. Choose a minimal subsystem Y ⊆ OT (x). Fix y ∈ Y ⊆ OT (x), so y = limTnkx
for some nk → ∞, or equivalently, d(Tnkx, y) → 0. Since T is an isometry, this is the same

as d(x, T−nky), so x ∈ O±T (y). But y is recurrent (Corollary 1.11), so by the previous lemma,

x ∈ OT (y) = Y . Therefore x belongs to a minimal subsystem and in fact OT (x) = Y .
Every two minimal sets are disjoint or equal (since their intersection is a subsystem both

one of them). We have just proved that every point belongs to a minimal subsystem. The fact
that X decomposes into a disjoint union of minimal subsystems is now immediate.

The last statement follows: if X = OT (x) for some x, then by the previous part of the proof,
X is minimal.

As a consequence of this theorem we have:

Corollary 2.7. In an equicontinuous system, every point is uniformly recurrent.

2.2 Group translations

We have already mentioned that Rα acting on R/Z is an example of a group translation: R/Z
is a group and Rα : x 7→ x + α mod 1 acts by translating by the �xed element α (if a-priori
α ∈ R, we reduce it modulo 1, and we have the same map Rα). More generally,

De�nition 2.8. A compact metric group is a group G together with a compact metric, with
respect to which the group operations are continuous; i.e. (h, g) 7→ hg is continuous as a map
G×G→ G and g 7→ g−1 is continuous as a map G→ G.

In other words, if gn → g and hn → h in G then gnhn → gh and g−1
n → g−1.

Examples

1. R/Z and more generally, (R/Z)d, the d-dimensional torus, are compact abelian groups.

2. The group of n × n orthogonal matrices under matrix multiplication (the metric can be
taken to be the operator norm on linear transformations, or any norm on the linear space
of matrices, restricted to the orthogonal ones). This space is compact because it is a closed
and bounded subspaces of a �nite dimensional normed space. The group operations are
continuous because they are polynomial in the coordinates; inversion is continuous because
it is a permutation of coordinates (transpose).

3. Any �nite group.

4. A countable product of �nite groups in the product topology.
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Given g ∈ G, the translation by g is the map Rg : G → G given by h 7→ gh. This notation
is slightly confusing because Rg is the left translation; it is sometimes denoted Lg, and Rg the
right translation h 7→ hg. In non-abelian groups these are di�erent maps. We retain Rg for
consistency to remind us it is a Rotation.

Lemma 2.9. If G is a compact group then the family of maps {Rg}g∈G is equicontinuous.

Proof. If not, then there exists some ε > 0 and a sequence δn → 0, and elements gn ∈ G and
hn, h

′
n ∈ G, such that d(hn, h

′
n) < δn but d(gnhn, gnh

′
n) ≥ ε. Using compactness of G and

passing to a subsequence if necessary, we can assume that gn → g, hn → h and h′n → h′. Of
course h = h′ because d(hn, h

′
n) ≤ δn → 0. But by continuity of multiplication and of the

metric, we get
0 = d(gh, gh) = d(gh, gh′) = lim d(gnhn, gnh

′
n) ≥ ε

which is impossible.

Proposition 2.10. Let G be a compact metric group G with identity element e, and g ∈ G.
Then

1. E = ORg (e) is a compact abelian subgroup of G

2. ORg (h) = Eh for every h ∈ G, and the decomposition of G into Rg-minimal sets is the
decomposition into right E-cosets.

3. If (G,Rg) contains a transitive point then it is minimal and G is abelian.

4. There exists an Rg-invariant metric.2

Proof. First note, that for any h, we have Rngh = gnh.

(1) Let E = ORg (e). Then e ∈ E and by Lemma 2.9, Rg acts equicontinuously and minimally
on E. If h1, h2 ∈ E then h1 = Rnkg e = lim gnk and h2 = limRmkg e = lim gmk for some sequences
(nk), (mk), so by continuity of the product in G,

h1h2 = ( lim
k→∞

gnk)( lim
k→∞

gmk)

= lim
k→∞

(gnkgmk)

= lim
k→∞

gnk+mk

This shows that h1h2 ∈ E. If we compute h2h1, we get the same limit (since gnk+mk = gmk+nk ,
so h1h2 = h2h1. Finally if Rnkg e = gnk → h then

R−nkg e = g−nk = (gnk)−1 → h−1

so h−1 ∈ O±Rg (e) = E, where the last equality is because e is recurrent and by Lemma 2.5. We
have shown that E is an abelian subgroup of G. Compactness is immediate.

(2) We have Rngh = (Rng e)h, so ORg (h) = (ORg (e))h, hence ORg (h) = ORg (e)h, giving (2).
(3) follows from (1) and Proposition 2.6.
(4) follows from Proposition 2.4.

2In fact, a compact group admits a metric such that Rg is an isometry for all g ∈ G simultaneously, but this
is slightly harder to prove when G is nor abelian.
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Perhaps more surprisingly, the converse is also true:

Theorem 2.11. Suppose that (X,T ) is an isometric system and some point has a dense orbit.
Then we can give X the structure of a compact abelian group, and T = Rx for some x ∈ X.

Proof. Consider the group Γ of isometries of X with the sup metric,

d(γ, γ′) = sup
y∈X

d(γ(y), γ′(y))

Then (Γ, d) is a complete metric space, the group operations are continuous,3 and d is invariant:
d(γ ◦ δ, γ′ ◦ δ) = d(γ, γ′).

Let y0 ∈ X have dense orbit and set X0 = {Tny0}n∈Z. If the orbit is �nite, X = X0 is
a �nite set permuted cyclically by T , so the statement is trivial. Otherwise y ∈ X0 uniquely
determines n such that Tny0 = y and we can de�ne π : X0 → Γ by y 7→ Tn ∈ Γ for this n.

We claim that π is an isometry. Fix y, y′ ∈ X0, so y = Tny0 and y′ = Tn
′
y0, so

d(πy, πy′) = sup
z∈X

d(Tnz, Tn
′
z)

Given z ∈ X there is a sequence nk →∞ such that Tnky0 → z. But then

d(Tnz, Tn
′
z) = d(Tn(limTnky0), Tn

′
(limTnky0))

= lim d(TnTnky0, T
n′Tnky0)

= lim d(Tnk(Tny0), Tnk(Tn
′
y0))

= lim d(Tny0, T
n′y0)

= d(Tny0, T
n′y0)

= d(y, y′)

Thus d(πy, πy′) = d(y, y′) and π is an isometry X0 ↪→ Γ. Furthermore, for y = Tny0 ∈ X0,

π(Ty) = π(TTny0) = Tn+1 = RT (Tn) = RTπ(y)

It follows that π extends uniquely to an isometry with X ↪→ Γ also satisfying π(Ty) =
RT (πy). The image π(X0) is compact, being the continuous image of the compact set X. Since
π(X0) = {Tn}n∈Z = ORT (idX), this is a group, and its closure is also a group G.

2.3 Discrete spectrum and the Halmos-von Neumann theorem

De�nition 2.12. Dynamical systems (X,T ) and (Y, S) are isomorphic or topologically
conjugate is there is a homeomorphism (continuous, 1-1 onto map) π : X → Y map π : X → Y
that intertwines the action, i.e.

Sπ = πT

Such a map π is an isomorphism of the systems. An isomorphism (X,T ) → (X,T ) is called
an automorphism.

3A word of warning: in the space of all continuous self-maps of X, the set of isometries is closed in the metric
d, but the set of homeomorphisms is not. To �x this, one uses the metric d′(γ, δ) = d(γ, δ) + d(γ−1, δ−1). But
for isometries this correction is not needed.
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Isomorphism preserves all topological properties of orbits, and we would like to classify
systems up to this relation. Our study of equicontinuous systems does not yet achieve this
goal � we have described how such systems arrise but not when they are are isomorphic. Note
that isomorphism of the underlying groups is not the same as isomorphism of the systems. For
example, for irrational α, β, are (R/Z, Rα) and (R/Z, Rβ) isomorphic? We shall now show that
the answer is generally negative, and obtain a complete classi�cation of minimal equicontinuous
systems up to isomorphism.

Denote the unit circle by S1 = {z ∈ C : |z| = 1}.

De�nition 2.13. Let (X,T ) be a dynamical system. A continuous eigenfunction with
eigenvalue λ 6= 0 is a continuous function f :X → S1, such that f ◦ T = λf . The discrete
spectrum of (X,T ) is the set Σ(X,T ) of eigenvalues.

These notions are just the usual linear algebra de�nitions to the linear map g 7→ g ◦ T
induced by T on C(X). Note that Σ(X,T ) is a group under multiplication, because if f, g are
continuous eigenfunctions with eigenvalues λ, ρ, respectively, then the pointwise product f · g is
a continuous eigenfunction with eigenvalue λρ.

Theorem 2.14 (Halmos-von Neumann). Two equicontinuous minimal systems are isomorphic
if and only if they have the same discrete spectrum.

For the proof we require some facts the theory of topological groups. IfG is a compact abelian
group, then χ : G → {z ∈ C : |z| = 1} is called a character if it is a group homomorphism
(with the multiplication operation in the range), so that χ(gh) = χ(g) · χ(h) for all h, g ∈ G,
and in addition χ is continuous. Characters do not have to exist in general groups, e.g. a simple
non-abelian group will not have any. But they are abundant in compact abelian groups:

Theorem (Pontryagin). Let G be a compact metrizable abelian group. Then there are countably
many characters and they separate points in C(G).

For example in R/Z, the characters are the functions {ϕn}n∈Z given by ϕn(t) = e2πint, and
in Rd/Zd the characters are {ϕv}v∈Zd given by ϕv(t) = e2πi〈v,t〉, where 〈·, ·〉 is the standard
inner product.

Corollary 2.15. If (X,Rg) is a group rotation, then every character is a continuous eigen-
function, and if Rg acts minimally then every eigenfunction is proportional to a character. In
particular the continuous eigenfunctions separate points and, up to multiplication by a scalar,
there are countably many of them.

Proof. Every character χ : X → C is an eigenfunction with eigenvalue χ(g), because

χ(Rgx) = χ(gx) = χ(g)χ(x)

Conversely, suppose Rg acts minimally and let f ∈ C(X) be an eigenfunction with eigenvalue λ.
By multiplying f by a scalar we can assume that f(e) = 1, where e ∈ X is the identity element.

19



Let h!, h2 ∈ X. By minimality, gnk → h1 for some nk →∞. Therefore

f(h1h2) = lim
k→∞

f(gnkh2)

= f(h2) lim
k→∞

λnk

= f(h2) lim
k→∞

λnkf(e)

= f(h2) lim
k→∞

f(gnke)

= f(h1)f(h2)

so f is a character.

Thus, for example, in (R/Z, Rα) the eigenfunctions are the scalar multiples of ϕn(t) = e2πint,
and the eigenvalue of ϕn is e2πinα, so Σ(R/Z, Rα) = {e2πinα}n∈Z.

Proof of the Halmos-von Neumann Theorem. Since minimal equicontinuous systems are isomor-
phic to group translations, we may assume that the systems have the form (G,Rg) and (H,Rh)
for compact abelian groups G,H.

Write {λi}i∈I = Σ(G,Rg) = Σ(H,Rh), and de�ne

Γ =
∏
I∈I

S1

The product is countable so this is a compact metrizable group under pointwise multiplication.
Let

γ = (λi)i∈I

so Rγ acts on Γ by
Rγ(t1, t2, . . .) = (λ1t1, λ2t2, λ3t3, . . .) ∈ Γ

This is a continuous map, and the system (Γ, L) is a group translation.
Let fi : G→ C be continuous eigenfunctions associated to λi such that {fi} separate points,

and de�ne the map π : G→ Γ by
π(x) = (fi(x))i∈I

Then π is continuous, it is injective because {fi} separate points, and it is an isomorphism to
its image because

π(Rgh) = (f1(Rgh), f2(Rgh), . . .)

= (λ1f1(h).λ2f2(H), . . .)

= L(f1(h), f2(h), . . .)

= Lπ(h)

Similarly, let gi : H → C be corresponding eigenfunctions for λi and let σ : H →
∏
i∈I S

1

denote the map
σ(y) = (gi(y))i∈I

By the same considerations, σ : H → σ(H) is an isomorphism to (σ(H), L).
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It remains to show that (σ(G), L) ∼= (σ(H), L). Indeed, σ(H), σ(G) are minimal subsets
of (Γ, L), so by Proposition 2.10, they are both cosets of the compact group Λ = OL(e), say
σ(G) = aΛ and σ(G) = bΛ. Therefore, Rba−1 is a homeomorphism of σ(G) → σ(H), and it
commutes with L because both are group translation in an abelian group. This is the desired
isomorphism of (σ(G), L) and (σ(H), L), and completes the proof.

Thus, if α, β ∈ R \ Q, we have Σ(R/Z, Rα) = {e2πinα}n∈Z and Σ(R/Z, Rβ) = {e2πinβ}n∈Z.
If α 6= ±β, these sets are distinct (since αZ, βZ are distinct). We conclude that there are
uncountably many non-isomorphic minimal rotations of R/Z.

2.4 Bohr almost periodic functions

As an application of the theory we have developed, we brie�y discuss Bohr's notion of an almost-
periodic function, and show how one gets a representation for all almost-periodic functions.

Let `∞(Z) denote the vector space space of bounded functions Z→ C with the sup norm.4

De�nition 2.16. A sequence a ∈ `∞(Z) is called almost periodic (in the sense of Bohr) if,
for every ε > 0, the set

{n ∈ Z : |ak+n − ak| < ε for all k ∈ Z}

is syndetic.

Clearly every periodic sequence is almost periodic but there non-periodic examples, e.g.
write

e(t) = exp(2πit)

and let
an = e(αn)

for some α /∈ Q. Then a = (an) is almost periodic. Indeed, given ε > 0 choose δ so that
|e(t) − 1| < δ whenever |t| < ε. Suppose that n ∈ Z is such that nε ∈ (m,m + δ) for some
m ∈ N; this set is syndetic because 0 is recurrent under Rε in R/Z. For any such n,

e(αn) = exp(2πiαn) = exp(2πi(m+ δ)) = exp(2πiδ)

hence |an − 1| < δ by choice of δ. Now, for any k,

|ak+n − ak| = |e(α(k + n))− e(αk)|
= |e(αk)e(αn)− e(αk)|
= |e(αk)| · |e(αn)− 1|
< ε

More generally, one can show that every trigonometric polynomial is almost periodic, i.e. every
a ∈ `∞ of the form an =

∑L
`=1 c`e(α`n) for c` ∈ C, α` ∈ R. For this we use recurrence of

translation by (α1, . . . , α`) in R`/Z`, which holds because every point in a compact group is
recurrent for any translation. Finally, any uniform limit of almost periodic functions is almost
periodic.

4Almost everything we do here transfers with minimal changes to the space of bounded continuous functions
on R, with the same de�nition of almost periodicity.
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The question now arises whether there are any almost periodic functions besides limits of
trigonometric polynomials. We shall not prove a theorem of Bohr, which states that the answer
is negative.

We can de�ne an isometry S on `∞(Z) by shifting:

(Sa)n = an+1

Then a ∈ `∞(Z) is almost periodic if and only if it is a uniformly recurrent point with respect
to the map S. Of course, `∞(Z) is far from being compact. However,

Proposition 2.17. If a ∈ `∞(Z) is almost periodic, then OS(a) is minimal.

Proof. Suppose a ∈ `∞(Z) is almost periodic. We �rst show that OS(a) is totally bounded, so
that OS(a) is compact. Indeed, let ε > 0. let M be such that

{n ∈ Z | ‖Sna− a‖∞ < ε}

intersects every interval of length M (such M exists because by assumption the set above is
syndetic). We claim that

OS(a) ⊆
M−1⋃
i=0

T iBε(a)

Indeed consider some Ska. There exists n ∈ (k −M,k] such that ‖Sna− a‖∞ < ε. Hence
(because Sk−n is an isometry)

∥∥Ska− Sk−na∥∥∞ < ε, or equivalently, Ska ∈ Bε(S
k−na) and

0 ≤ k − n < M .
Now X = OS(a) is compact, S acts on it as an isometry, and a ∈ X has dense orbit. So by

Proposition 2.6, (OS(a), S) is minimal.

Theorem 2.18. If a ∈ `∞(Z) is an almost periodic function, then a is the limit in `∞ of
trigonometric polynomials.

Proof. Let a be almost periodic and let G = OS(a). This is a minimal set and S is an isomtery
with respect to ‖·‖∞, so G can be give a group operation · under which Sb = h · g for some
h ∈ G and all g ∈ G.

Consider the function π : `∞(Z) → C given by π(b) = b0. This is a continuous function
and restricts to a continuous function on G, so given ε > 0, there exist dn ∈ C and characters

χ1, χ2, . . . , χN ∈ Σ(G) such that
∥∥∥π −∑N

n=1 dnχn

∥∥∥
∞
< ε.

Next, note that

an = π(Sna)

= π(hn · a)

=

N∑
i=1

diχi(h)nχi(a)± ε

Writing ci = diχi(n) and de�ning αi so that χi(a) = e(αi) (recall that |χ
i
| = 1), we have

‖a−
∑
cie(αi)‖∞ < ε, which shows that a is in the closure of trigonometric the polynomials.
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2.5 Problems

In the following questions (X, d) is a compact metric space.

1. Show that the de�nition of equicontinuity is independent of the metric. That is, if d1, d2

are equivalent metrics, then equicontinuity with respect to a metric d1 is equivalent to
equicontinuity with respect to d2.

2. Give an example of a system which is not equicontinuous.

3. Assuming that T is invertible, show that (X,T ) is equicontinuous if and only if (X,Tn)
is.

4. Let (X,T ) be an equicontinuous system and d a metric on X. Show directly from the
de�nition that for every x, y ∈ X with x 6= y,

lim inf
n→∞

d(Tnx, Tny) > 0

5. Let D ⊆ C denote the closed unit disc. Let T : D → D denote the map that rotates the
circle of radius r by angle r: that is, T (reiθ) = rei(θ+r). Show that this system decomposes
into disjoint minimal systems, but is not equicontinuous.

6. Let Tx = 10x mod 1. Show that every subsystem ([0, 1), T ) such that (X,T |X) is equicon-
tinuous, must be �nite.
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3 Expansive and symbolic systems

We now pivot to a class of systems of a completely di�erent nature � those which are, from the
metric point of view, far from equicontinuity. We will focus on symbolic systems, which besides
being a rich source of examples, are important as �models� for other, less accessible dynamical
systems. One particular outcome of this section is that there exist minimal systems which are
not equicontinuous.

3.1 Expansive systems

De�nition 3.1. A system (X,T ) is forward expansive if there exists an ε > 0 such that for
every x, y ∈ X with x 6= y, there is an n ∈ N such that d(Tnx, Tny) > ε. If T is invertible we
say it is two-sided expansive the same holds but allowing n ∈ Z. The constant ε is called the
expansiveness constant.

This de�nition excludes equicontinuity except in the most trivial cases. Indeed, if (X,T ) is
equicontinuous and expansive, let ε > 0 be the expansivity constant. Then there is a δ > 0 such
that d(x, y) < δ implies d(Tnx, Tny) < ε for all n. It follows that there are no distinct pairs x, y
with d(X, y) < δ, so every point in X is isolated, and by compactness, X is �nite.

Remarks and examples

1. The de�nition uses the metric, the property of expansiveness is independent of the metric,
although the constant ε changes.

2. Clearly a subsystem of an expansive system is expansive (with the same constant).

3. Given an integer a ≥ 2, the system R/Z ∼= [0, 1) with the map x 7→ ax mod 1 is expansive.

4. If A is a d× d integer matrix acting on Td by x 7→ Ax mod 1, then A is expansive if and
only if all eigenvalues are of modulus > 1. If detA = 1 then A−1 is also integral and so
the action on the torus is invertible; in this case two-sided expansiveness will hold if all
eigenvalues are not of unit modulus (such a matrix is called hyperbolic).

Perhaps the most important example, however, is that of a symbolic system.

3.2 Symbolic systems

Let Λ be a �nite set, write

Λ∗ =

∞⋃
n=0

Λn

for the set of �nite words in the language Λ, including the empty word. We denote one- and
two-sided in�nite sequences by (x1x2 . . .) or (. . . , x−1x0|x1x2 . . .), respectively, where | separates
the 0th and 1st coordinates.
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Topology

The spaces of all such sequences are the product spaces ΛN and ΛZ; thinking of Λ as a discrete
topological space, ΛN and ΛZ carry the product topology, which is compact in the product
topology. This is the topology generated by the cylinder sets, by which we mean sets [a]k
de�ned by �xing a ∈ Λ∗, k ∈ Z and

[a]k = {y : a appears in y at index k}

We abbreviate [a] = [a]1. These sets are open and closed, and the product spaces are compact
by Tychono�'s theorem.

Metric

One can also introduce a metric inducing this topology: for two sequences x, y, set

|x ∧ y| = min{|n| : xn 6= yn}

and5

d(x, y) = 2−|x∧y|

The closed ball of radius 2−N centered at x is precisely the cylinder [x1, . . . , xN ]1 in the one-sided
case, and [x−N , . . . , xN ]−N in the two-sided case. Every cylinder is a �nite union of cylinders of
this form, so the metric induces theproduct topology.

Convergence

Convergent sequences can be described as follows. Say that x, y agree on their �rst N symbols
if they agree at all coordinates 1 ≤ i ≤ N in the one-sided case, or −N ≤ i ≤ N in the two-sided
case. This is equivalent to d(x, y) ≤ 2−N . Then x(n) → x if and only if for every N , the points
x(n), x agree on their �rst N symbols as soon as n is large enough (depending on N).

Shift map

Next, de�ne the shift map S on ΛN and ΛZ by

(Sx)i = xi+1

Note that the shift map is continuous: if x 6= y, then |Sx∧Sy| ≥ |x∧ y| − 1, hence d(Sx, Sy) ≤
2d(x, y). Also, S is onto, and it is bijective in the two-sided case, with inverse given by

(S−1x)i = xi−1

In the one-sided case it is not injective, since S(abbb . . .) = S(bbb . . .) for every a 6= b in Λ. In
fact, for every x ∈ ΛN we have S−1x = {(ax1x2 . . .) | a ∈ Λ}, and in particular, |S−1x| = Λ.

5We remark that the choice of the base 2 in the de�nition of the metric is arbitrary, and if one uses any other
constant greater than one an equivalent metric is obtained.
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Symbolic systems

De�nition 3.2. Let Λ be a �nite set. The systems (ΛN, S) or (ΛZ, S) are called the one-sided
full shift and the two-sided full shift, respectively.

A subshift of symbolic system is a subsystem of a full shift. It is one-sided or two-sided,
depending on the full shift in question.

The full shift is expansive with constant ε = 1 in the metric we have chosen: if x 6= y, then
xn 6= yn for some n, and than (Snx)0 = xn 6= yn = (Sny)0, so d(Snx, Sny) = 1.

As examples of subshifts we have trivial examples: the full shift itself, and periodic orbits.
In fact, the subshifts form an extremely rich class of dynamical systems, and will soon see a
more interesting example.

Language of a subshift

Let us now re-interpret the dynamical properties we have encountered in the context of symbolic
systems. If X is a subshift, then its language is

L(X) = {a ∈ Λ∗ : X ∩ [a] 6= ∅}
= {a ∈ Λ∗ : a appears in some sequence x ∈ X}

If X is one-sided, then L(X) determines X. For suppose X 6= Y are subshifts. Then either
there exists x ∈ X \Y or there exists y ∈ Y \X. In the �rst case, suppose that x1 . . . xn ∈ L(Y )
for all n. Then there are points in Y containing x1 . . . xn, and by applying a shift we can assume
the occurrence is at the �rst coordinate. Then these points converge to x, so x ∈ Y , contrary
to assumption. Thus there must be some n with x1 . . . xn ∈ L(X) \ L(Y ), hence L(X) 6= L(Y ).
If we had y ∈ Y \X we would argue similarly.

In the two-sided case, L(X) determines the subshift X provided we assume S(X) = X.
The argument is the same as above using x−n . . . xn; surjectibity is needed in order to shift
occurences of this word in Y back to their original position.

We have the following dictionary between dynamical properties of x and languages:

� x ∈ ΛZ is recurrent if and only if for every n there are in�nitely many occurrences of
x−n . . . xn at positive coordinates in x. In the one-sided case, one demands occurrences of
x1 . . . xn.

Indeed, recurrence means that for every open set U containing x, there exist arbitrarily
large n with Tnx ∈ U . Since the cylinders form a basis for the open sets, it su�ces to
consider cylinders containing x, and therefore cylinders of the form U = [x−k . . . xk]−k.
Then Tnx ∈ U just means that x−k . . . xk occurs in x at position n.

� If x ∈ ΛZ then OS(x) is the unique subshift X such that L(X) = L(x) (In the one-sided
case x ∈ ΛN, use one-sided orbits).

Indeed, if y ∈ O±S (x) then y is a limit of points Snx, so every word in y appears in
Snx at the same position for some large n. hence in x, at another position. This gives

L(O±S (x)) ⊆ L(x), and the reverse inclusion is obvious. Uniqueness follows since L(X)
determines X.

For instance, this shows that the full-shift is transitive, since if x is a sequence that contains
all �nite words (e.g. a concatenation of all words) then L(x) = L(ΛZ).
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� Notice that for any a ∈ Λ∗,

N(x, [a]) = {n : xn . . . xn+|a|−1 = a}

Thus, x ∈ ΛZ is uniformly recurrent if and only if every a ∈ L(x) appears in x syndetically,
and a subshift X ⊆ ΛZ is minimal if and only if every a ∈ L(X) appears syndetically in
every x ∈ X.

Proposition 3.3. If X ⊆ ΛZ is a subshift then there exists a unique subshift Y ⊆ ΛN such that
L(Y ) = L(X).

Conversely, for every subshift Y ⊆ ΛN such that SY = Y , there exists a unique X ⊆ ΛZ

such that L(X) = L(Y ).

Proof. Given X. For x ∈ X let π(x) = (x1, x2, . . .) ∈ ΛN and

Y = π(X) = {(x1, x2, . . .) : x ∈ X}

Since π is continuous and X is compact, Y is compact. It is a subshift because if y ∈ Y then
there exists a choice of negative coordinates yi, i ≤ 0, such that x = (. . . y−1y0|y1y2y3 . . .) ∈ X.
Then Sx = (. . . y1|y2y3 . . .) ∈ X so (y2y3 . . .) = π(Sx) ∈ Y . Finally, it is clear that any word
appearing in Y appears in X, and if a word a ∈ Λ∗ appears in some x ∈ X at coordinate i then
it appears in x′ = S−|i|+1x at a positive coordinate, so it appears in πx′ ∈ Y .

In the opposite direction, let Y be given and let X̃ = π−1Y . Let X =
⋂∞
n=1 S

nX̃. One may
then verify that X is closed, shift invariant and L(X) = L(Y ).

3.3 Minimal substitution systems

We can now give non-trivial examples of minimal subshifts that are not equicontinuous. A
substitution is a map σ : Λ→ Λ∗ . We extend σ to Λ∗ pointwise: σ(a1 . . . an) = σ(a1) . . . σ(an),
and also to ΛN using the same formula. The extension to ΛN is continuous, provided |σ(a)| > 1
for all a ∈ Λ. A substitution is called primitive if σ(a) contains all symbols of Λ for every
a ∈ Λ.

For example, let Λ = {0, 1} and let

σ(0) = 01

σ(1) = 10 (1)

Then
σ(0110) = 01 10 10 01

(the spaces were inserted for emphasis only). This example is known as the Thue-Morse substi-
tution.

Lemma 3.4. Suppose that σ is substitution and that σ(a) begins with a for some a ∈ Λ. Then
σn(a) is a pre�x of σn+1(a). In particular there is a point x ∈ ΛN such that σn(a) is a pre�x of
x for all n.

Remark 3.5. Even if no symbol a ∈ Λ exists as in the proposition, by replacing σ by σn (for
some n ≤ |Λ|) we will be able to �nd such a symbol.
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Proof. By induction.

The example above is of the type in the lemma with a = 0. Thus

σ(0) = 01

σ(01) = 0110

σ(0110) = 01101001

σ(01101001) = 0110100110010110

etc. The limiting sequence x is called the Thue-Morse sequence.

Proposition 3.6. Suppose that σ is primitive and that x is as in Lemma ??. Then x is
uniformly recurrent.

Proof. We �rst claim that x can be written as x = σk(x) = σk(x1)σk(x2) . . .. Indeed σn(a) =
σk(σn−k(a)), holds for all n ≥ k, and both σn(a) and σn−k(a) are pre�xes of x. Therefore σ
transforms arbitrarily long pre�xes of x into pre�xes of x. The conclusion follows.

Taking k = 1, and using the fact that σ is primitive, we �nd that every symbol appears
syndetically in x.

Now �x any w ∈ L(x), so w it appears in σk(a) for some k. Let M denote the maximal
length of σk(b), b ∈ Λ. We saw above that a appears in x syndetically, with gaps of at most N
for some N ≥ 0. Since x = σk(x), the word σk(a) appears in x separated by at most N words
of the form σk(b); so the gaps between occurrences of σk(a), and hence between occurrences of
w, are at most MN .

Returning to the Thue-Morse sequence x, the orbit closure OS(x) is an in�nite minimal
subshift. We now claim that it is not periodic:

Proposition 3.7. The Thue-Morse sequence x is not periodic, and OS(x) is in�nite.

Proof. The two statements are equivalent (since the orbit closure is minimal). We prove the
�rst..

An easy induction shows that σn(0) ends alternately in 0 (for odd n) and 1 (for even n).
Also, observe that 00 appears in σ2(0). Because σn(00) = σn(0)σn(0), the second occurrence of
σn(0) is preceded alternately by 0 and 1. But σn(0) also begins with σn−1(0). Thus, we �nd
1σk(0) in σ2k(00) and we �nd 0σk(0) in σ2k+1(00).

Summarizing, we can �nd arbitrarily long words b in x such that both 0b and 1b appear in
x. Therefore, x is not periodic.

In conclusion we have shown for σ as in (1), the subshift Xσ ⊆ {0, 1}N is in�nite and
minimal. The two sided subshift Xσ ∈ ΛZ with the same language L(X) = L(x) is also in�nite
and minimal. It is called the substitution system generated by σ.

3.4 When does the past predict the future?

For a point x ∈ ΛZ write
x− = (. . . , x−2, x−1, x0) ∈ Λ−N∪{0}
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and for a two-sided subshift X ⊆ ΛZ write

X− = {x− : x ∈ X}

We say that x ∈ X extends y ∈ X− if y = x−1.

Proposition 3.8. Let X ⊆ ΛZ be a two-sided subshift X. Then every z ∈ X− extends to a
unique x ∈ X if and only if X is �nite.

Proof. A �nite two-sided subshift is a �nite union of periodic orbits. In this case the unique
extension property is immediate, since a periodic sequence in Λ−N extends uniquely to a periodic
sequence in ΛZ.

For the converse, suppose every z ∈ X− extends uniquely to a point in X. We claim that
then there is an n ∈ N such that x−n, . . . , x0 determines x1 for all x ∈ X. Otherwise, for every
n there is a word an ∈ Ln(X) and distinct symbols un, vn ∈ Λ such that anun, anvn ∈ Ln+1(X).
Therefore, there are words x(n), y(n) ∈ X such that x(n)|[−n+1,1] = anun and y(n)|[−n+1,1] =

anvn. By compactness, we can choose a subsequence n(k) such that x(n(k)) → x and y(n(k)) → y.
Then x− = y− but x1 6= y1, contrary to the unique extension assumption.

Now given n as above, we claim that |X| ≤ |Λ|n. Indeed, it is enough to show that LN (X) ≤
|Λ|n for all N . This follows from the fact that every a ∈ LN (X) is determined by it initial n
symbols, because once these are known, the subsequence symbols are determined one by one.

De�ne X+ analogously to X−. Then:

Corollary 3.9. Every z ∈ X− extends uniquely to x ∈ X if and only if every w ∈ X+ extends
uniquely to x ∈ X.

In a dynamical system (X,T ) a pair of points x, x′ ∈ X is called forward asymptotic if
d(Tnx, Tnx′)→ 0, and backward asymptotic if the same holds with n→ −∞. Proposition 3.8
can be rephrased as saying that in an in�nite two-sided subshift, there always exist asymptotic
pairs; indeed if x− = y− then x, y are backward asymptotic and conversely if x, y are backward
asymptotic then one easily checks that xn = yn for all su�ciently negative n. Of course, we also
have a result in the positive direction.

In this language, there is an analogous result for expansive systems in general:

Proposition 3.10. If (X,T ) is an invertible, expansive and in�nite system, then it contains
forward and backward asymptotic pairs.

The proof appears as a guided exercise at the end of this section.
We end this section with a surprising fact: Although in general the past does not predict the

future in a minimal symbolic system, there is always a large set of points where this does hold.

Proposition 3.11. Let X ⊆ ΛZ be a minimal symbolic system. Then there is a dense Gδ set
P ⊆ X such that for every x ∈ P , the sequence x is the only extension x− to a point in X.

Proof. We �rst prove a more modest claim: There is a dense open set P0 ⊆ X, such that for
x ∈ P0 and y = x−, there is a unique a ∈ Λ such that ya appear in X.

Let w ∈ L(X) be any word and write w′ for the word obtained by deleting the last symbol
of w. Since w appears in X with bounded gaps, there exists a maximal gap; let wvw ∈ L(X)
realize this gap, so wvw is the longest word in X such that w appears in wvw only as written.
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Now let b = b(w) = wvw′. The only way to extend b to a word in L(X) is to extend it to wvw,
because any other extension leads to a point in X with a too-large gap between ws. Now set

P0 =
⋃

w∈L(X)

[b(w)]−`(b(w))

This is an open set, and it is dense because the words w′ at the end of b(w) is arbitrary.
Now let

P =

∞⋂
n=0

S−nP0

If x ∈ P then x ∈ P0, so x− determines x0. Now x ∈ S−1P0, so Sx ∈ P0 meaning that
. . . x−1x0x1 determines x2; and so on.

Finally, since P0 is open and dense, so are all of its shifts S−nP0; so P is a dense Gδ set by
Baire's category theorem.

A word of warning: a dense Gδ set is large from a topological point of view, but may be
small in other ways, e.g. there can well be an invariant measure on X for which there is no set
of positive measure with the property of P .

3.5 Problems

1. Show that L ⊆ Λ∗ is the language of a two-sided subshift if and only if it satis�es the
following properties:

Closed to subwords: If a ∈ L and b is a subword of a then b ∈ L.
Extensibility: For every a ∈ L there exist u, v ∈ Λ such that uav ∈ L.

2. Show that the condition that S is onto is necessary in Proposition 3.3.

3. Construct a word x ∈ {0, 1}N inductively. Start with the word x1x2x3 = 111, and as-
suming we have de�ned x1 . . . x3n , de�ne x3n+1 = . . . = x2·3n = 0 and x2·3n+1 . . . x3n+1 =
x1 . . . x3n .

(a) Show that x is recurrent, but not uniformly recurrent.

(b) Describe all the minimal subsystems of OS(x).

4. Prove the statement in Remark 3.5.

5. Show that every two-sided expansive system (X,T ) contains an asymptotic pair.

(a) Prove that for every δ > 0 there are points x 6= y with d(x, y) ≥ δ and d(Tnx, Tny) ≤
δ for n ≥ 1.

(b) Let ε > 0 be the expansivity constant of the system. Show that for every 0 < δ < ε/2
there is an N = N(δ) such that if x, y are as in (a), then there exists 0 ≤ n ≤ N such
that d(T−nx, T−ny) ≥ 2δ.

(c) Now consider points xn, yn as in (a) for δ = ε · 2−n and n = 1, 2, 3 . . .. Show that for
some k(n) the points T−k(n)xn and T−k(n)yn will converge to an asymptotic pair.
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4 The Enveloping semigroup

We return now to the study dynamical systems in general and minimal systems in particular.
The tool we introduce here is the Ellis semigroup, which is the closure of {Tn}∞n=0 in a suitable
topology. We have already seen this idea at work in our study of equicontinuous systems, where
we took the closure in the uniform topology, and obtained a compact group, on which translation
by T mirrored the original dynamics. However, the uniform closure is compact only when the
system is equicontinuous, so in order to go any further we must weaken the topology. This
produces quite di�erent, and often odd, results, but turns out to be a very powerful tool, which
we will need later on. As an immediate application, we will derive a combinatorial result due
to Furstenberg on a class of subsets of the integers with additive structure.

4.1 The enveloping semigroup

Let X be a compact metric space. The set of all functions X → X is identi�ed as the product
set XX , which carries the product topology. A basis of open sets for this topology is given by
sets of the form Ux1,...,xn,ε(f) where f : X → X, x1, . . . , xn ∈ X, ε > 0, and

Ux1,...,xn,ε(f) = {g : X → X : d(f(xi), g(xi)) < ε for i = 1, . . . , n}

This topology is not metrizable unlessX is countable; but by Tychono�'s theorem, it is compact.

De�nition 4.1. The enveloping semigroup (or Ellis semigroup) E = E(X,T ) of a dynamical
system (X,T ) is the closure of {Tn}n≥0 in XX , with the operation of composition of functions.

If f ∈ E then f(x) ∈ OT (x) for every x ∈ X, since for every k there is an nk such that
d(Tnkx, f(x)) < 1/k and thus Tnkx→ f(x).

More generally, for any x1, . . . , xn ∈ X, there is a sequence (nk) such that f(xi) = limTnkxi.
Thus, an element in E corresponds to a choice of a point in the orbit closure for any initial

point, in a way that the times along which the orbit converges to the point is compatible across
all �nite choices of initial points. Note that it is not possible to choose a single (nk) that works
for all points, and the existence of non-trivial elements in E generally requires the axiom of
choice (for more discussion, see problems at the end of this section).

Lemma 4.2. Let E = E(X,T ).

1. Tn ∈ E for every n ≥ 0.

2. For every x ∈ X the map f 7→ fx is a continuous map on E.

3. For every g ∈ E, the map f 7→ f ◦ g is continuous on E.

4. If g ∈ E is continuous, then the map f 7→ g ◦ f is continuous on E.

5. E is a semigroup (under composition).

Proof. (1) is obvious. Also (2) is immediate from the de�nition of the topology.
Properties (3) and (4) hold in the larger semigroup XX of all functions X → X. Indeed,

continuity of f 7→ f ◦ g follows from the identity

h ∈ Ug(x1),...,g(xn),ε(f) ⇐⇒ h ◦ g ∈ Ux!,...,xn,ε(f ◦ g)
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If g is continuous, assuming d(y1, y2) < δ implies d(g(y1), g(y2)) < ε, we conclude that

h ∈ Ux1,...,xn,δ(f) =⇒ g ◦ h ∈ Ux1,...,xn,ε(g ◦ f)

hence f 7→ g ◦ f is continuous.
Finally we prove (5): Since {Tn}n≥0 ⊆ E and the family {Tn}n≥0 is closed under post-

composition with T , and since T is continuous, (4) implies that {Tn}n≥0 is also closed to
post-composition with T . Thus for any f ∈ E also Tnf ∈ E for all n ≥ 0, and so by (3), we have
Ef ⊆ E .

Note that even when T is invertible, E can contain non-invertible maps. For example, if
x, y ∈ X are forward asymptotic, then there will exist f ∈ E such that f(x) = f(y) � just take
any accumulation point of {Tn}.

4.2 Ideals, idempotents and minimal points

There is a close connection between algebraic structures in E and the behavior of orbits in
(X,T ). We prove some of them below.

De�nition 4.3. A subset ∅ 6= α ⊆ E is called an ideal if Eα ⊆ α.

The set E itself is a closed ideal, and if f ∈ E then Ef is a closed ideal, since g 7→ gf is
continuous. The intersection of any decreasing family of closed ideals is again a closed ideal.
Therefore by Zorn's lemma, there exist closed ideals in E which are minimal to inclusion.

If α is a minimal closed ideal, then Eα is an ideal and Eα ⊆ α, so by minimality, Eα = α.

Proposition 4.4. A closed subset Y ⊆ X is a minimal subsystem if and only if Y = αx for
some point x ∈ X and some minimal closed ideal α ⊆ E.

Proof. Suppose Y = αx as in the statement. Let y, z ∈ Y. Then y = fx for some f ∈ α. Now,
Ef is a closed ideal and Ef ⊆ Eα ⊆ α, so Ef = α. Thus z ∈ Ex = Efx = Ey and we conclude
that z ∈ OT (y). Since y, z ∈ Y were arbitrary, every orbit in y is dense in Y , so Y is minimal.

Conversely, suppose that Y is minimal and let x ∈ Y . Since Tnx ∈ Y for all n, we have
Ex ⊆ Y . Let α be a minimal ideal in E . Then αx ⊆ Y and αx is a minimal subsystem of Y ,
since Tαx ⊆ αx ⊆ Y . Hence Y = αx.

De�nition 4.5. An element f ∈ E is idempotent if f2 = f .

This means that f acts as the identity map on its image.

Proposition 4.6. Every closed, minimal ideal α ⊆ E contains an idempotent. In particular,
idempotents exist in E.

Proof. Consider the family S of non-empty closed sub-semigroups of α (i.e. closed subsets σ ⊆ α
satisfying σσ ⊆ σ). This family is non-empty because α ∈ S, and any decreasing intersection in
S is again in S. So by Zorn's lemma, we can choose a minimal element σ ∈ S.

Let f ∈ σ and note that σf is again a closed sub-semigroup of α and σf ⊆ σ, so by minimality
σf = σ. Let

τ = {g ∈ σ : gf = f}
This is again a closed sub-semigroup of σ, and it is non-empty since σf = σ. So by minimality
again, τ = σ, hence f ∈ τ , and f is an idempotent.
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De�nition 4.7. Let (X,T ) be a dynamical system. Points x, y ∈ X are proximal if

inf
n≥0

d(Tnx, Tny) = 0

and they are distal if this fails, i.e. if

inf
n≥0

d(Tnx, Tny) > 0

Note that if x, y ∈ X are distal then f(x) 6= f(y) for all f ∈ E . Put di�erently, if f ∈ E and
if f(x) = f(y), then x, y are proximal.

Theorem 4.8. Let (X,T ) be a dynamical system. Then every point is proximal to a uniformly
recurrent point.

Observe that given x ∈ X, we know that there are uniformly recurrent points y ∈ OT (x).
Now, Tnkx → y for some sequence nk and if also Tnky → y then x, y would be proximal and
the theorem would follow. However, while y is certainly recurrent, there is no reason it must
recur along the given sequence (nk). So the content of the theorem is that we can choose y in
such a way that its recurrent pattern is similar to the pattern by which x is attracted to y. It
is not clear at all why such a point should exist!

Proof. Choose a minimal ideal α ⊆ E and an idempotent f ∈ α. Let x ∈ X and let y = f(x).
Then y ∈ αx, so y belongs to the minimal subsystem αx, hence y is uniformly recurrent. On
the other hand,

fy = f(fx) = f2x = fx

Therefore x, y are proximal.

To the best of my knowledge, there is no constructive proof of the last theorem (note that
we used Zorn's lemma to produce an idempotent, which is crucial to the proof).

4.3 A combinatorial application to IP-sets

In the 1970s, Furstenberg, Katznelson and Weiss uncovered deep connections between topolog-
ical dynamics and certain problems in combinatorics. We shall see one such connection here.

De�nition 4.9. Given a �nite or in�nite sequence (nk) ⊆ N, the set of partial sums is

FS(nk) = {ni1 + . . .+ ni` : i1 < i2 < . . . < i` , ` ∈ N} (2)

an IP-set is any set of this form.

For example,

� If (nk) = (p, p, p, . . .) then FS(nk) = pN.

� If (nk) = (1, 2, 4, 8, . . .) then FS(Nk) = N.

� If (nk) = (1, 3, 9, 27, . . .) then FS(nk) consists of natural numbers whose base-3 expansion
contains only the digits 0, 1 (not the similarity with the Cantor set).
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In general, FS(nk) is not a semigroup under addition, because we are not allowed to use each nk
more than once in the sum in (2). One should think of it as parallelogram with sides n1, n2, . . ..
In fact this is the source of the name: In�nite-dimensional Parallelogram.

Theorem 4.10. Let N = A1 ∪ . . . ∪ Ar be a �nite partition of N. Then one of the sets Ai
contains an in�nite IP-set.

Proof. In this proof we write N0 = N∪ {0} and consider the shift space ΣN0 ,everything there is
de�ned in the same way as before.

Consider the full shift ({1, . . . , r}N0 , S). Form the sequence x ∈ {1, . . . , r}N0 by setting x0

arbitrary and
xn = i ⇐⇒ n ∈ Ai

This point encodes the partition (Ai).
Let y ∈ {1, . . . , r}N0 be a uniformly recurrent point such that x, y are proximal under the

shift map S. Such a y exists by Theorem 4.8.
In the symbolic setting, proximality means the following: For every k there are arbitrarily

large n such that all coordinates of x, y agree on the interval [n, n+ k].
Let u = y0 ∈ {1, . . . , r}. We will show that Au contains an IP-set.
To begin, using uniform recurrence of y, choose k1 such that the occurrences of u in y occur

syndetically with gaps at most k1. Then, using proximality of x, y, choose n′1 so that x, y acree
on [n′1, n

′
1 + k!]. One of these coordinates, say at index n′1 + j1, is u. So set n1 = n′i + j1; we

have found that u appears in x at this coordinate, so n1 ∈ Au.
Next, the word y0 . . . yn1 appears syndetically in y with gaps at most k2. Choose n

′
2 > n1 so

that x, y agree on the interval [n′2, n
′
2 + (n1 + k2)]. Choose 0 ≤ j2 ≤ k2 so that y1 . . . yn1

occurs
in y at n2 = n′2 + j2, and hence also in x. Notice that the occurrence of u appears at n1 in
x, y now repeats at n2 + n1 because the entire word y0 . . . yn1

repeats starting at n2. So now
n1, n1 + n2 ∈ Au.

Proceed inductively. Assume we have found n1 < n2 < . . . np such that u appears in x and
y at all indices i ∈ FS(n1, . . . , np). The word y0 . . . yn1+...+np contains all these occurrences
and appears syndetically in y with gap at most kp+1. Choose n′p+1 so that x, y agree on
[np+1, np+1 + (n1 + . . .+ np + kp+1)], choose 0 ≤ jp+1 ≤ kp+1 so that y0 . . . yn1+...+np+1

appears
in y (and therefore x) at index np+1 = n′p+1 + jp+1. In particulat the occurrence at y0 is
replicated at np+1 so np+1 ∈ Au. Also, for every i ∈ FS(n1, . . . , np) the occurrence of u at
index i in y repeats in x at np+1 + i. Thus, also np+1 + i ∈ Au for akk i ∈ FS(x1 . . . xp).

The end result is that we have constructed n1 < n2 < . . . such that u appears in x at every
coordinate i ∈ FS(nk), and this is what we wanted.

This conversion from a problem about subsets of N to a problem in symbolic dynamics, was
introduced by Furstenberg, and is today called the Furstenberg correspondence principle.

The proof argument given above in the symbolic setting may be re-formulated in general
terms. We leave the proof as an exercise.

Proposition 4.11. Let (X,T ) be a dynamical system, let x ∈ X and suppose that x is proximal
to a uniformly recurrent point y. Then for every open set U containing y, the set N(x, U)
contains an IP-set.

To conclude, we mention the following generalization of the last theorem:
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Theorem (Hindman). If A ⊆ N is an IP-set and A1 ∪ . . .∪Ar is a partition of A, then one of
the sets Ai contains an IP-set.

Compare this to Ramsey's theorem about graphs, which says that in any partition of a large
enough complete graph, one of the partition elements contains an induced complete graph of
large size. In other words, complete graphs are �hard to destroy�: by �nitely partitioning a
large complete graph, many smaller complete graphs necessarily survive. We have the same
phenomenon above: if we �nitely partition an IP-set, many smaller IP-sets will survive.

Hindman's theorem can also be proved by dynamical methods, see ??.
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5 Factors and extensions

In this section we introduce the notion of �homomorphim� for dynamical systems, which is called
the factor. These provide thelanguage for various results on the structure of dynamical systems,
much as homomorphism allow structure theorems in group theory, e.g. the structure theorem
for nilpotent groups.

5.1 Factors

De�nition 5.1. A dynamical system (Y, S) is a factor of a system (X,T ), and (X,T ) is an
extension of (Y, S), if there is a continuous onto map π : X → Y that intertwines the actoin:
action: πT = Sπ. We then write π : (X,T )→ (Y, S)

Examples

1. Trivial factors: Every system is a factor of itself via the identity map, and every system
factors to the 1-point system.

2. An isomorphism is a factor map that is injective (note that we use compactness to deduce
continuity of the inverse map).

3. When we analyzed the map T10 : x 7→ 10x mod 1 on R/Z, we did so by identifying a point
x ∈ R/Z with its binary expansion as a number in [0, 1): x = 0.x1x2 . . .. We used the fact
that T10x = 0.x2x3 . . ..

Thus, in decimal representation, T10 acts as a shift on the space of sequences. More
precisely we can form

X = {0, 1, . . . , 9}N

with the product topology, and let S : X → X denote the map

(Sx)n = xn+1

Then S acts on sequences in �the same way� as T10 acts on decimal expansions. However,
this is not an isomorphism of (R/Z, T10) with the full shift {0, . . . , 9}N because decimal
expansions are not unique (0.500 . . . = 0.4999 . . .).

However, we do have a factor map from (X,S) to (R/Z, T10), given by (x1, x2, . . .) 7→
0.x1x2 . . ..

4. The following example explains the terminology. Let X = Z/mZ and Y = Z/kZ, both
with the maps x 7→ x + 1. When k is a factor of m, the map π(x) = x mod k is a
factor map between the systems, and conversely, if π : X → Y is a factor map then,
since x 7→ x + 1 on X is injective, and since π intertwines the maps +1, we will have
|π−1(y)| = |π−1(y + 1)|. Thus all �bers have the same size p and m = pk, so k is a facto
of m.

5. If f ∈ C(X) is a continuous eigenfunction of (X.T ) with eigenvalue λ ∈ S1, then f :
(X,T )→ (S1, Rλ) is a factor map, since

f(Tx) = λf(x) = Rλf(x)
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6. Given (X,T ) and (Y, S), form the product X × Y and T × S(x, y) = (Tx, Sy). This is
called the product system. Then the projections X×Y → X and X×Y → Y are factor
maps.

Factors arise naturally in the original physical interpretation of dynamical systems, as follows.
Suppose that (X,T ) is a system that we are interested in; usually, we are not able to measure
the world-state precisely, and all we can usually do is make a measurement of the current
state and observe the outcome at di�erent times. Mathematically, this means that there is
a (continuous) function f : X → R, such thThese are the trivial cases.at and at each time
step we observe the value of f , so if the world state is x ∈ X our observation consists of the
sequence (f(x), f(Tx), f(T 2x), . . . , f(TNx)) for some large N . Having measured the system for
long enough we may (taking a leap of faith imagine that we have observed (f(Tnx))∞n=−0 for all
time. Then what we have observed is a pont in a factor of the original system; for by continuity,
the values of f lie in some bounded interval [a, b], and the map

f̃ : x 7→ (f(Tnx))∞n=1 ∈ [a, b]N

is a factor map from (X,T ) to ([a, b]N, S). We leave it as an exercise to verify that this is indeed
a factor map.

It is an interesting question when such a measurment is enough to determine everything
about the system. This may, or may not, depend on the function. One can also ask whether
adding more measurments � equivalently, taking f : X → RN for some N � may be neough
to reveal the entire system. This answer is subtle but nearly understood, more details can be
found in ??.

Lemma 5.2. Let π : (X,T )→ (Y, S) be a factor map.

1. If Y ′ ⊆ Y is a subsystem then π−1(Y ′) ⊆ X is a subsystem.

2. If X ′ ⊆ X is a subsystem then π(X ′) ⊆ Y is a subsystem

3. If x ∈ X then π(OT (x)) = OS(π(x)) and π(OT (x)) = OS(π(x)).

Proof. Continuous images and pre-images of closed sets in compact spaces are closed. Also,
if TX ′ ⊆ X ′ then πX ′ ⊇ π(TX ′) = Sπ(X ′), and πX ′ is S-invariant; and if SY ′ ⊆ Y ′ and
Tπ−1Y ′ = π−1SY ′ ⊆ π−1Y ′ so π−1Y ′ is T -invariant.

For the last statement, note that if πTnx = Sny which gives π(OT (x)) = OS(π(x)). The
statement with closures follows from the general fact that whenever π : X → Y is a continuous
map of compact metric spaces, for any set A ⊆ X we have π(A) = π(A).

Many dynamical properties are preserved under factors.

Proposition 5.3. A factor of a minimal system is minimal.

Proof. If(X,T ) → (Y, S) is a factor map then every non-trivial subsystem of Y lifts to a non-
trivial subsystem of X. Thus, minimality of X implie the same for Y .

Proposition 5.4. A factor of an equicontinuous system is equicontinuous.
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Proof. If X is equicontinuous we may choose a T -invariant metric on X. The metric on Y given
by

d(y, y′) = min{d(x, x′) : x ∈ π−1(Y ) , x′ ∈ π−1(Y ′)}

is equivalent to the original metric on Y , and with respect to it, S is an isometry.

Dynamical properties of points transfer to factors as well:

Lemma 5.5. If a point is transitive / recurrent / uniformly recurrent / periodic point, then its
image under a factor map has the same property.

We leave the proof as an exercise.

5.2 Factor maps between symbolic systems (the Curtis-Hedlund The-
orem)

It is easy to create factors of a symbolic system using the following recipe. Let A,B be �nite
alphabets. Let π0 : A2n+1 → B be a function, and de�ne a map π : AZ → BZ by

(πx)i = π0(xi−n, xi−n+1 . . . xi . . . xi+n)

Such a map is called a sliding block code (based on π0), because the symbols in π(x) are
obtained by �sliding a window of radius n along x� and applying π0 towhat we see.

The map π above is continuous (the preimage of a cylinder set is a union of cylinder sets),
and it commutes with the shift, i.e.. S ◦ π = π ◦ S (Note that when A 6= B, the map S denotes
a di�erent map on the two sides of this expression), Letting Y = π(AZ), it is easy to see that Y
is closed and shift invariant, and π : AZ → Y a factor map.

Example 5.6. Let X = {0, 1}Z and πx = xn + xn−1 mod 1. This is a sliding block code and a
factor map. (We already met this factor map in Problem ??). .

Theorem 5.7 (Curtis-Hedlund-Lyndon). If X,Y are subshifts and π : X → Y a factor map,
then π is given by a block code.

Proof. Let X ⊆ AZ and Y ⊆ BZ. Fix i ∈ B and consider the cylinde [i] = {y ∈ Y : y0 = i}. It
is open and closed, so π−1[i]⊆ X is open and closed. Since it is open, it is the union of cylinder
sets; since it is closed, hence compact, it can be covered by �nitely many of these cylinders.
Denote them Ci,1, . . . , Ci,n(i). For any x ∈ Ci,n(i) we know that (πx)0 = i. Repeat this for every
i ∈ B. We obtain �nitely many cylinder sets {Ci,j}i∈B,j≤n(i) such that if we know which Ci,j x
belongs to, we know (πx)0. Since membership to Ci,j is determined by x−n, . . . , xn for some n,
there is a function π : A2n+1 → B such that (πx)0 = π0(x−n . . . , x). Finally, since π is a factor
map,

(πx)k = π(Skx)0 = π0((Skx)−n . . . (S
kx)n) = π0(xk−n . . . xk+n)

so π is the restriction to X of the sliding block code determined by π0.

The same works for one-sided shifts if we de�ne a block code for π0 : An → B by (πx)i =
π0(xi . . . xi+n−1). The details are left as an exercise.

The Curtis-Hedlund further theorem reduces the theory of symbolic systems to combina-
torics: If X,Y are given and we ask whether there exists a factor map X → Y , then this boils
down to looking for sliding block codes.
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For example here is one surprising application. In general, two systems which factor onto
each other may factor in many ways; for example (R/Z, Rα)→ (R/Z, R2α) vit the map x 7→ 2x.
But any map of the form x 7→ 2x+ β is a factor map as well. For symbolic systems, we have:

Corollary 5.8. If X,Y are subshifts, then there are at most countably many factor maps π :
X → Y .

Proof. Every factor map is a sliding block code, and there are countably many sliding block
codes, because each is determined by one of countably many maps π0.

Cellular automata

Sliding block codes are natural models of phisical evolution of in�nite con�gurations, since the
dynamics is �local� � each symbol in π(x) depends only on nearby symbols in x. A sliding block
code from a full shift to itself, π : AZ → AZ, is sometimes called a cellular automaton, and they
are often studied as dynamical systems in themselves, i.e. one considers iterates of π (rather
than the shift). The theory has a combinatorial �avor; note that there are only countably
many sliding block codes (for each given pair of alphabets). There is a close connection with
computation and recursion theory, and many problems about the dynamics of cellular automata
are not decidable based on the sliding block code.

5.3 Inverse limits

For any �nite sequence of factors Xn → Xn−1 → . . .→ X1 of systems (Xi, Ti), the �top� system
(Xn, Tn) contains �all the information�, in some sense about all the others. The next de�nition
gives a general construction of a system that sits �at the top� of an in�nite sequence of factors
of this kind.

De�nition 5.9. A directed system of factors is a sequence {(Xn, Tn)}∞n=1 of dynamical systems
and factor maps πn : Xn+1 → Xn, forming the sequence

. . .
πn−−→ Xn

πn−1−−−→ Xn−1 → . . .
π1−→ X1

The inverse limit (X,T ) = lim←(Xn, Tn) is the dynamical system de�ned as a subset of∏∞
n=1Xn by

X = {(xn)∞n=1 : xn ∈ Xn and xn = πnxn+1} ⊆ XN

with the map T de�ned by
T (x)n = Tnxn

.

Let us verify some properties:

1. X 6= ∅; taking any x1 ∈ X1, we can extend x1 to x = (Xn) ∈ X using the fact that πn are
onto.

2. X = lim←Xn is a closed set because πn are continuous; if xi → x and xi ∈ X, then
xin → xn for all n, and since πn(xin+1) = xin for all i and n and πn are continuous this
relation is maintained in the limit, πn(xn+1) = xn.
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3. X is T invariant: if x ∈ X then for each n we have πnxn+1 = xn, so πnTxn+1 = Tπnxn+1 =
Txn, so Tx ∈ X.

4. If each Tn is onto then T is onto: if x = (xn) ∈ X, choose any y1 ∈ T−1
1 (x1). Since

π1 is onto, we have π−1(T−1
1 (x1)) = T−1

2 (π−1x1) so we can choose y2 ∈ T−1
2 (x2) with

π1y2 = y1. continuing by induction we �nd yn ∈ T−1
n (xn) with πn−1yn = yn−1. Then

y = (yn) ∈ T−1(x).

5. Let π̃n(x) = xn. Then π̃n : X → Xn is a factor map and πn−1π̃n = π̃n−1. The maps
π̃n are onto (this again uses the fact that πn are onto). Furthermore if x 6= x′ in X then
π̃nx 6= π̃nx

′ for some n.

6. Suppose that (Y, S) is a system and σn : Y → Xn are factor maps such that πn−1σn =
σn−1. Then the map σ : Y →

∏∞
n=1Xn given by

σ(y) = (σn(y))∞n=1

is continuous, and maps Y onto X; indeed the relation πn−1σn = σn−1 shows that σ(y) ∈
X and since σn are all onto, given x ∈ X, we can �nd points yn ∈ Y such that σnyn = xn.
Note that for m ≤ n,

σmyn = πmπm+1 . . . πn−1σnyn = πmπm+1 . . . πn−1xn = xm

Passing to a subsequence such that ynk → y, we have

σm(y) = limσm(ynk) = limxm = xm

so σ(y) = x, showing that σ is onto X. Finally, it is not hard to check that σ is a factor
map � one must verify that σS = Tσ. We leave this veri�cation as an exercise.

7. If (Y, S), σ1, σ2, . . . and σ are as above and if {σn} separate points (i.e. for every y 6= y′

in Y we have σn(y) 6= σn(y′) for some n), then σ is 1-1, so it is an isomorphism of (Y, S)
and (X,T ). This shows, that the properties of (X,T ) stated in (5) characterize it up to
isomorphism.

This construction has many uses. For example

Proposition 5.10. Let (X,T ) be a dynamical system with T onto. Then there exists an in-

vertible dynamical system (X̃, T̃ ) and π : X̃ → X a factor map.
Furthermore, we can choose (X,T ) to be minimal in the following sense: If (Y, S) is any

invertible dynamical system with a factor map σ : Y → X, then there exists a factor map
ρ : Y → X̃ such that σ = πρ.

De�nition 5.11. The system in the proposition is unique up to isomorphism and is called the
natural extension of (X,T ).

Proof. Since T is onto and trivially intertwines the T -action, it is a factor map, and we can

take the inverse limit of the directed system . . .
T−→ X

T−→ X → . . .
T−→ X. Let (X̃, T̃ ) denote

the inverse limit as constructed above and π = π̃1. A point x ∈ X̃ has the form (xn) with
xn = Txn+1. Therefore,

(T̃ x)n+1 = Txn+1 = xn

It follows that the shift map S on X is an inverse to T̃ .
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The existence of the natural extension allows many results to be transfered painlessly from
invertible systems to non-invertible ones and vice versa. For example, suppose we had proved the
existence of a forward-recurrent point in any invertible system; if now (X,T ) is non-invertible,
we can apply the result in its natural extension to �nd a forward-recurrent point there, and
project it down to X.

5.4 Problems

1. Complete the proofs in this section.Show that the inverse limit of a minimal systems is
minimal.

2. Show that the natural extension of an invertible system is isomorphic to the original
system.

3. Let X ⊆ ΛN be a subshift such that S is onto. Let Y ⊆ ΛZ be the subshift satisfying
L(Y ) = L(X). Show that (Y, S) is isomorphic to the natural extension of (X,S).

4. In this question we discuss skew-products which are rich souce of examples for extensions
for a given dynamical system.

De�nition 5.12. Let (Y, S) be a dynamical system, let Z be a compact metric space,
and f : Y → C(Z,Z) a continuous map. The system X = Y × Z with the map

T (y, z) = (Sy, fyz)

is called a skew product over Y , and is denoted Y ×f Z. The map f is called the cocycle
of the skew product, (Y, S) is the base and and Z the �ber.

Remarks and examples

� If X = Y ×f Z is a skew-product then the projection π(y, z) = y is a factor map
X → Y .

� Start with (Y, S) = (R/Z, Rα) for some α ∈ R. Take Z = R/Z and for y ∈ Y = R/Z
let fy(z) = z + y. Then the skew-product map in Y ×f Z is

(x, y) 7→ (x+ α, x+ y)

This is a map of the 2-torus.

� Let Y = Z = {1,−1}Z and let S be the shift map. De�ne f : Y → {S, S−1} by

f(x) = Sx0 =

{
S x0 = 1
S−1 x0 = −1

Then the skey product Y ×f Z can be interpreted as follows: the �rst coordinate
contains instructions which way to shift the second coordinate each time T is applies.
Thus, given (y, z) ∈ Y ×f Z, we have

Tn(y, x) = (Sny, S
∑n−1
i=0 yiz)

For a randomly chosen sequence y and any z, the central limit theorem implies that
for large n the second component of Tn(y, z) will be a shift of z by an order of

√
n.
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Not every extension π : X → Y is a skew product over Y . In fact, it is easy to give
examples where the �bers π−1(x) are not homeomorphic (all one needs is a topological
example, then take the identity maps). Even if the �bers are homeomorphic, we may not
have X = Y × Z for any Z.

For example, consider (X,T ) = (R/Z, Rα) and (Y, S) = (R/Z, R2α) with π : X → Y given
by π(x) = 2x mod 1. Then π−1(y) = {y, y + 1/2} but X 6∼= Y × {0, 1/2} as topological
spaces.

Problems

(a) Let X = Y = {0, 1}Z and π : X → Y given by

π(x)n = xn + xn+1 mod 1

Show that this map is 2-to-1 everywhere, that topologically X = Y × {0, 1}. Then
show that it is a skew product.

(b) Let (X,T ),(Y, S) be a dynamical systems. Suppose X = Y ×Z as a topological space,
and that π(y, z) = y is a factor map X → Y . Show that X is a skew-product over Y .
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6 Transitivity and weak mixing

We continue to study systems at the �chaotic� end of the spectrum. First, we introduce the
class of transitive system, which weakens the notion of minimality. Then we discus e�ne mixing
systems, which are systems where every open set �spreads over the entire space� not only when
viewed over all time, but also at many individual (but perhaps far away) times. Finally, we
show that weak mixing systems are precisely those with no equicontinuous factors.

6.1 Transitivity

In a minimal system (X,T ), every non-emtpy open set covers the space under iteration by T .
The following notion is slightly weaker.

De�nition 6.1. A (X,T ) a dynamical system is transitive if for every open set ∅ 6= U, V ⊆ X
there exists n ≥ 0 such that U ∩ T−nV 6= ∅.

Equivalently:
⋃∞
n=0 T

−nU is dense in X for every open ∅ 6= U ⊆ X.

Examples

1. Every minimal system is transitive.

2. Full shifts are transitive. Indeed, let U, V ⊆ ΛN. Choose words u, v ∈ Λ∗ such that [u] ⊆ U
and [v] ⊆ V , and let x = uvvvv . . . ∈ ΛN. Evidently, x ∈ [u] ∩ S−|u|[v] ⊆ U ∩ S−|u|V . So
the latter intersection is non-empty and the system is transitive.

3. The identity map on any space with more than one point is not transitive.

4. Translation of R/Z by α for a rational α on is not transitive. Indeed, if α = `/k in reduced

terms, then U = (0, 1/2k) satis�es
⋃∞
n=0R

−n
α =

⋃k−1
m=0(m/k,m/k + 1/2k), which is not

dense.

5. Translation by (α, α) on R2/Z2. This is non-transitive even when α is irrational.

6. A factor of a transitive system is transitive, since if π : (X,T ) → (Y, S) is a factor map,
and ∅ 6= U, V ⊆ Y are open, then π−1(U), π−1(V ) 6= ∅ are open in X, hence for some n
we have

∅ 6= π−1(U) ∩ T−nπ−1(V )

= π−1(U) ∩ π−n(S−1V )

= π−1(U ∩ S−nV )

hence U ∩ S−nV 6= ∅.

There is a close connection between transitivity and the existence of transitive points (points
with dense orbit). It will be convenient to write

τ(X,T ) = {x ∈ X : x is a transitive point}

This set may, of course, be empty. We abbraviate it as τ(X) or τ(T ) depending on the context.
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Proposition 6.2. Let (X,T ) be a dynamical system. Then τ(X) ⊆
⋃∞
n=1 T

−nU for every open
set U ⊆ X, and if {Vi}∞i=1 is a basis for the topology6 and Vi 6= ∅, then

τ(X) =

∞⋂
i=1

∞⋃
n=1

T−nVi

Consequently, if (X,T ) is transitive, then τ(X,T ) is a dense Gδ set, and in particular, transitive
points exist.

Proof. Let U 6= ∅ be open. If x is transitive then by de�nition OT (x)∩U 6= ∅, i.e. Tnx ∈ U for
some n ≥ 0. Thus, τ(X) ⊆

⋃∞
n=1 T

−nU . Moreover, given {Vi},

x is transitive ⇐⇒ OT (x) intersects every non-emtpy open set

⇐⇒ OT (x) intersects Vi for every i

⇐⇒ x ∈
∞⋃
n=1

T−nVi for every i

⇐⇒ x ∈
⋂
i

∞⋃
n=1

T−nVi

Finally, suppose that (X,T ) is transitive. Fixing a countable basis {Vi} for the topology, by the
previous lemma, τ(X) =

⋂
i

⋃∞
n=1 T

−nVi. Transitivity implies that each union in this expression
is dense, and the intersection is countable, so τ(X) is a dense by Baire's theorem.

The converse of this proposition is almost true, but not quite. To see what can go wrong,
consider X = { 1

n : n ∈ N} ∪ {0} with the map T0 = 0 and T (1/n) = 1/(n + 1). Then 1 ∈ X
is a transitive point, but the system is not transitive:

⋃∞
n=0 T

−n{1/n} = {1/k : k ≤ n} is not
dense in X.

The problem in this example may be identi�ed as the presence of isolated points. Without
such points, we obtain a converse to the previous proposition.

Proposition 6.3. Let (X,T ) be a dynamical system without isolated points. If there exist
transitive points, then (X,T ) is transitive.

Proof. Let x ∈ X be a transitive point. We claim that also Tnx is transitive for every n ≥ 0.
Assuming this, for any open set U 6= ∅ we have OT (x) ⊆ τ(X) ⊆

⋃∞
n=0 T

−nU , so
⋃∞
n=0 T

−nU
is dense, giving transitivity.

So �x x′ = Tnx and let y ∈ X. Let V be a neighborhood of y. Then V is in�nite, because y
is not isolated, so W = V \ {x, Tx, . . . , Tnx} is a non-empty open set, and there exists a k ∈ N
such that T kx ∈W . Clearly k > n, so T k−nx′ ∈W ⊆ V . This shows that x′ has dense forward
orbit.

We next discuss transtivity in invertible systems. When T is invertible we say that it is
bi-transitive if for every ∅ 6= U, V ⊆ X open, there is an n ∈ Z such that U ∩ TnV 6= ∅, i.e.⋃
n∈Z T

nU is dense whenever U 6= ∅ is open. Recall that a point is bi-transitive if its two-sided

6A basis for the topology of a metric space X is a family {Vi} of open sets such that every open set in X is
a union of (some of the) Vi. When the space is compact, countable bases exist (e.g. take Vi = Bri (xi), where
{xi} is a countable dense set and {ri} an enumeration of the positive rationals).
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orbit is dense. We then have analogs of Lemma 6.2 and Proposition 6.3, with bi-transitivity in
place of transitivity, and with the unions

⋃∞
n=1 T

−nU replaced by
⋃∞
n=−∞ T−nU .

One naturally wonders about the relation between transitivity of T and of T−1, and also
their connection with bi-transitivity. This is addressed in the following proposition. We discuss
the situation when there are isolated points in the problems section.

Proposition 6.4. Let (X,T ) be an invertible dynamical system without isolated points. Then
each of the following are equivalent:

1. T is transitive.

2. T−1 is transitive.

3. T is bi-transitive.

Proof. Let us �rst show the equivalence of (1) and (2). By symmetry it is enough to prove that
(1) implies (2), so assume T is transitive. For every non-empty ∅ 6= U, V ⊆ X, there exists an
n ≥ 0 such that V ∩ T−nU 6= ∅. Applying the homeomorphism Tn = (T−1)−n we get

(T−1)−nV ∩ U 6= ∅

Since this holds for all such U, V this shows that T−1 is transitive.
Each of the conditions (1) and (2) imply (3), simply because

⋃
n≥0 T

−nU ⊆
⋃
n∈Z T

nU .
Now suppose that (3) holds. Let x ∈ X be bi-transitive (there is a dense Gδ set of such

points). We �rst claim that it is either forward or backward recurrent. Indeed, for every
neighborhood U of x, for every N , the set U \ {T ix : |x| < N} is non-empty and open so there
is an n with |n| > N and Tnx ∈ U . It follows that Tnkx→ x with |nk| → ∞, and passing to a
subsequence we can assume nk →∞ or nk → −∞.

Now apply Lemma 2.5, to conclude that either the forward or the backward orbit closure
is equal to O±T (x) = X. Thus (again using the absence of transitive points), T is forward or
backwards transitive, and we have proved (1) or (2) (and hence both).

6.2 Weak mixing

As we shall see here and in the coming sections, the behavior of the self-product system (X ×
X,T × T ) provides a wealth of information about X. Outside of the trivial case where X
is a single point, the product X × X is never minimal, because, for example, it contains the
diagonal subsystem ∆ = {(x, x) : x ∈ X}, and also the o�-diagonal subsystems,
∆k = {(x, T kx) : x ∈ X}. On the other hand, it sometimes does happen that the self-product
is transitive, and it turns out this has a close connection to (the absence of) equicontinuous
behavior in the system.

De�nition 6.5. A system (X,T ) is weak mixing if (X ×X,T × T ) is transitive.

Remarks and examples

1. Why �weak� mixing? Because there is another stronger notion, calles strong mixing. We
will discuss it in the problems section..
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2. The full shift X = ΛN is weak mixing. To see this note that X × X is isomorphic to
(Λ× Λ)N, which is again a full shift, and so it is transitive.

Nevertheless, let us examin more closely how one might construct a transitive point in
ΛN × ΛN. To be concrete take Λ = {0, . . . , 9}. A transitive point in the product must
consist of a pair of transitive points, since it must project to a transitive point on each
coordinate. So let us begin with the point corresponding to the Champernown number

x = (0, 1, 2, . . . , 9, 1, 0, 1, 1, 1, 2, 1, 3, . . . , 1, 9, 2, 0, . . .)

and let us lok for a point y such that (x, y) is transitive in the product. What this means
is that in the pair (x, y), an every pair a, b ∈ Λn, we want the pair (a, b) to appear in
(x, y). Now, a appears in x, and in fact it appears in�nitely many times. So we can
construct y as follows. Let Λ∗ = {c1, c2, . . .} be an enumeration of all �nite words. Let
{(i1, j1), (i2, j2), . . .} = N × N be an enumeration of all pairs of natural numbers. Now
form y as recursively follows. At stage n of the construction, �nd the �rst occurrence of
cin in x that is to the right of all symbols in y that have already been de�ned, and place
cjn at this position in y. After this has been done for all n ∈ N, any unde�ned symbols in
y are set to 0. Now (x, y) contains every pair (ci, cj), so it is transitive.

We remark that in general, when X is weak mixing and x ∈ X is transitive, there is no
guarantee that a y ∈ X can be found such that (x, y) is transitive in X ×X.

3. Weak mixing implies transitivity: indeed (X,T ) is a factor of (X × X,T × T ), e.g. by
projection to the �rst coordinate, so the image of a transitive point in the latter is a
transitive point in the former.

4. Transitive systems may not be weak mixing. To see this, consider Z/pZ with Tx =
x + 1 mod p and p > 1. Then X × X breaks into p periodic the points, namely the
cosets of the subgroup generated by (1, 1). These are distinct minimal sets so there are no
transitive points in X ×X.

5. The factor of a weak mixing system is weak mixing. Indeed, if π : (X,T ) → (Y, S) is
a factor map, then π × π : X × X → Y × Y is a factor map of the product system, so
transitivity of X ×X implies the same for Y × Y .

For U, V ⊆ X let
N(U, V ) = {n ≥ 0 : U ∩ T−nV 6= ∅} (3)

Transitivity of (X,T ) just means that N(U, V ) 6= ∅ for every open sets U, V 6= ∅. Weak mixing
can be similarly characterized:

Lemma 6.6. For all open sets ∅ 6= U,U ′, V, V ′ ⊆ X,

N(U, V ) ∩N(U ′, V ′) = N(U × U ′, V × V ′)

where the right hand side is taken in (X ×X,T × T ).
In particular, (X,T ) is weak mixing if and only if N(U, V )∩N(U ′, V ′) 6= ∅ for all U, V, U ′, V ′

as above.
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Proof. The �rst statement is clear form the identity

(U ∩ T−nU ′)× (V ∩ T−nV ′) = (U × V ) ∩ (T × T )−n(U ′ × V ′)

Since the product of open sets form a basis for the topology of X × X, the condition in the
last statement is equivalent to N(Ũ , Ṽ ) 6= ∅ for all ∅ 6= Ũ , Ṽ ⊆ X ×X, which is transitivity of
X ×X, i.e. weak mixing of X.

One can view the fact that every two sets N(U, V ) intersect is a measure of their largeness.
In fact, not only do they intersect, but the intersection is large in the same sense:

Lemma 6.7. Suppose that (X,T ) is weak mixing. Then for all open sets ∅ 6= U,U ′, V, V ′ ⊆ X,
there exist open sets ∅ 6= W,W ′ ⊆ X such that N(W,W ′) ⊆ N(U, V ) ∩N(U ′, V ′).

Proof. Choose k such that W = U ∩ T−kU ′ 6= ∅ and W ′ = V ∩ T−kV ′ 6= ∅; these exist because
by the previous lemma, N(U,U ′) ∩N(V, V ′) 6= ∅.

Now given n such that W ∩ T−nW ′ 6= ∅, we have

U ∩ T−nV ⊇W ∩ T−nW ′ because U ∈W , V ⊇W ′

6= ∅

hence n ∈ N(U, V ). Also,

T−k(U ′ ∩ T−nV ′) = T−kU ′ ∩ T−n(T−kV ′)

⊇W ∩ T−nW ′ because U ′ ⊇ T−kW , V ′ ⊇ T−kW ′

6= ∅

so n ∈ N(U ′, V ′).

Proposition 6.8. If (X,T ) is weak mixing then (X × X,T × T ) is weak mixing and more
generally all cartesian powers (X×α, T×α) are weak mixing.

Proof. By the second part of Lemma 6.6, weak mixing of X×X means that any two sets of the
form N(Ũ , Ṽ ) are non-empty, for open sets ∅ 6= Ũ , Ṽ ⊆ X ×X. By the �rst part of the same

lemma, N(Ũ , Ṽ ) is itself an intersection of two sets of the form N(U, V ) with ∅ 6= U, V ⊆ X
open.

Thus, weak mixing for X ×X would follow from the non-trivial intersection of every fours
sets of the form N(U, V ) with ∅ 6= U, V ⊆ X.

But the previous lemma says that when (X,T ) is weak mixing, the intersection of two such
sets contains a set of the same form; so by induction any �nite intersection of such sets contains
a set of the same form, and so it is non-empty.

One may ask, what do the sets N(U, V ) look like in a weak mixing system?

De�nition 6.9. A set E ⊆ N is thick if it contains intevals of arbitrary length, i.e.: for every
n ≥ 1 there exists i such that {i, i+ 1, . . . , i+ n− 1} ⊆ E.

Proposition 6.10. If (X,T ) is weak mixing then N(U, V ) is thick for all open sets ∅ 6= U, V ⊆
X.
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Proof. Suppose that (X,T ) is weak mixing. Fix n and open sets U, V 6= ∅ and consider the sets

Ũ = U×n and Ṽ = V × T−1V × . . .× T−(n−1)V in X×n. By weak mixing of the latter system,
there exists i ≥ 0 such that U∩(T×n)−iṼ 6= ∅. This implies that {i, i+1, . . . , i+n−1} ⊆ N(U, V ),
so N(U, V ) is thick.

Here is one application:

Proposition 6.11. If (X,T ) is weak mixing and (Y, S) is minimal, than X × Y is transitive.

Proof. Write Z = X × Y . It su�ces to show that for every pair of open sets ∅ 6= W,W ′ ⊆ Z in
some basis for the topology of Z, we have W ∩ (T × S)−nW ′ 6= ∅ for some n ≥ 0.

Consider W = U × V and W ′ = U ′ × V ′ for open sets U,U ′ ⊆ X and V, V ′ ⊆ Y . Then

N(W,W ′) = N(U,U ′) ∩N(V, V ′)

SinceY is minimal, N(V, V ′) is syndetic; i.e. it has gaps bounded by some ` > 0. Since (X,T ) is
weak mixing, N(U,U ′) is thick, so it contains some interval of length > `. Thus the intersection
above non-empty, as desired.

6.3 Equicontinuous factors

The purpose of this section is to connect weak mixing with equicontinuity. The easy direction
of this relation is the observation is that equicontinuity is an obstruction to weak mixing:

Proposition 6.12. If (X,T ) is equicontinuous and X contains more than one point, then it is
not weak mixing.

Proof. By Theorem 2.4 we may assume that T is an isometry. Now if (x, y) ∈ X ×X, then

OT×T (x, y) ⊆ {(x′, y′) ∈ X ×X : d(x′, y′) = d(x, y)}

This is a closed proper subset of X ×X so (x, y) is not transitive.

Corollary 6.13. If (X,T ) is weak mixing then it has no non-trivial equicontinuous factors.

Proof. Immediate from the last proposition and the fact that a factor of a weak mixing system
is weak mixing.

It turns out that, for minimal systems, the converse is also true: Any minimal system that
is not weak mixing necessarily admits an equicontinuous factor. We prepare the ground for the
proof in the next sections.

The weak-* topology on P(X)

(This section is more detailed than what was presented in class).
We �rst recall some basic tools for studying measures on compact spaces.
Let X be a compact metric space and let M(X) denote the linear space of signed (�nite)

Borel measures, and P(X) = P(X,B) ⊆M(X) the convex space of Borel probability measures.
Two measures µ, ν ∈ M(X) are equal if and only if

∫
fdµ =

∫
fdν for all f ∈ C(X), and the

maps µ 7→
∫
fdµ, f ∈ C(X), separate points.
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De�nition 6.14. Let X be a compact metric space. The weak-* topology onM(X) (or P(X))
is the weakest topology that make the maps µ 7→

∫
f dµ continuous for all f ∈ C(X). In

particular,

µn → µ if and only if

∫
fdµn →

∫
fdµ for all f ∈ C(X)

Lemma 6.15. Let X be a compact metric space and F ⊆ C(X) a dense set of funtions. Suppose
that µn ∈ P(X) and lim

∫
fdµn exists for all f ∈ F . Then there exists µ ∈ P(X) such that

µn → µ, that is,
∫
fdµ = lim

∫
fdµn for all f ∈ C(X).

Proof. Let V = spanF . By assumption lim
∫
fdµn exists for all f ∈ F , and hence for all f ∈ V ,

since integrals and limits are �nitely additive. For f ∈ V denote the limit by Λ(f). This is
positive, linear, bounded function on V and so extends to such a function on C(X) = V , which
we denote also by Λ. By the Riesz representation theorem there exists µ ∈ P(X) such that
Λ(f) =

∫
fdµ for all f ∈ C(X). We now claim

∫
fdµn →

∫
fdµ for all f ∈ C(X). We already

know this for , and V is dense. Fixing any f ∈ C(X) let ε > 0 and g ∈ (V ) with ‖f − g‖∞ < ε.
We get

|
∫
fdµn −

∫
fdµ| < |

∫
fdµn −

∫
gdµn|+ |

∫
gdµn −

∫
gdµ|+ |

∫
gdµ−

∫
fdµ|

< ε+ |
∫
gdµn −

∫
gdµ|+ ε

→ 2ε as n→∞

Since ε was arbitrary, we get
∫
fdµn →

∫
fdµ.

Proposition 6.16. The weak-* topology is metrizable and compact.

Proof sketch. Using the Stone-Weierstrass theorem shoose a dense sequence {fi}∞i=1 ⊆ C(X).
De�ne a metric on P(X) by

d(µ, ν) =

∞∑
i=1

2−i
∣∣∣∣∫ fidµ−

∫
fidν

∣∣∣∣
One shows that this metric is compatible with the topology. Next, if µn ∈ P(X) is a sequence of
measures, a diagonal argument can be used to show that there is a subsequence µn(k) such that
for every i, the limit lim

∫
fidµn(k) exists. The previous lemma now shows that µn(k) → µ for

some measure µ. This proves sequential compactness, which, by metrizability, is compactness.

Let (X,T ) be a topological dynamical system. Then we also get an induced map T : P(X)→
P(X), given by µ 7→ µ ◦ T−1.

Lemma 6.17. Let (X,T ) be a topological dynamical system. Then the induced map T : P(X)→
P(X) is continuous.

Proof. If µn → µ then for f ∈ C(X),∫
f dTµn =

∫
f ◦ T dµn →

∫
f ◦ T dµ =

∫
f dTµ

This shows that Tµn → Tµ, so T is continuous.
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Invariant measures

In a dynamical system (X,T ), a Borel probability measure µ ∈ P(X) is T -invariant if µ(A) =
µ(T−1A) for all Borel sets A ∈ B. Our goal is to show that such measures exist.

For x ∈ X let

µx,N =
1

N

N−1∑
n=0

δx,N

This is a probability measure and we note that∫
fdµx,N =

1

N

N−1∑
n=0

f(Tnx)

for all f ∈ C(X).

Proposition 6.18. Every topological dynamical system (X,T ) admits invariant measures.

Proof. Let x ∈ X be an arbitrary initial point and let µN = µx,N be as above. Passing to a
subsequence N(k)→∞ we can assume by compactness that µN(k) → µ ∈ P(X). We show that∫
f dµ =

∫
f ◦ T dµ for all f ∈ C(X):∫

f dµ−
∫
f ◦ T dµ = lim

k→∞

∫
(f − f ◦ T ) dµN(l)

= lim
k→∞

1

N(k)

N(k)−1∑
n=0

∫
(f − f ◦ T )(Tnx)

= lim
k→∞

1

N(k)

(
f(TN(k)−1x)− f(x)

)
= 0

because f is bounded.
Next, if U ⊆ X is a bounded open set let fn ∈ C(X) be functions increasing to 1U . Then

fn ◦ T increase to !U ◦ T = 1T−1U . Therefore

µ(U) =

∫
1Udµ

= lim
n→∞

∫
fnfµ by monotone convergence

= lim
n→∞

∫
fn ◦ Tdµ because fn ∈ C(X)

=

∫
1T−1Udµ by monotone convergence

= µ(T−1U)

Passing to complements we have the same for closed sets. Finally, to go from open and closed
sets to all Borel sets one uses regularity of the measure. We leave the details as an exercise.
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This proves that invariant measures always exist. Now we specialize to the case where (X,T )
is minimal. Let U 6= ∅ be open, and choose V 6= ∅ open with V ⊆ U . By minimality, Tnx ∈ V
on a syndetic set of n, so there is an ` > 0 such that the gap between consecutive visits of the
orbit to V in at most `. It follows, that, up to an O(`) error, from time 0 to N − 1, the number
of visits to V is N/`. Chose an f ∈ C(X) with 1V ≤ f ≤ 1U . Then

µ(U) ≥
∫
fdµ = lim

k→∞

∫
fdµNk ≥ limµN (U) =

1

`
+O`(

1

N
)

so µ(U) ≥ 1/`. In particular, µ(U) > 0.
We have proved:

Theorem 6.19 (Bogolyubov). Let (X,T ) be a dynamical system and x ∈ X. Then there exists
a T -invariant Borel probability measure µ on X. If T is minimal, then µ(U) > 0 for every open
set U 6= ∅.

Existence of equicontinuous factors

We are now ready for the main result of this section:

Theorem 6.20. If (X,T ) is invertible, minimal and not weakly mixing then it admits an
equicontinuous factor.

Lemma 6.21. Let g : X → R be a lower semi-continuous function, i.e., for all x ∈ X and
xn → x, we have g(x) ≥ lim sup g(xn). If (X,T ) is minimal and g is invariant, then g is
constant.

Proof. A standard argument shows that g achieves a maximal value at some point x0. For any
x ∈ X, Choose nk so that Tnkx0 → x. Then

g(x0) = g(Tnkx0) by invariance of g

= lim sup
k→∞

g(Tnkx0)

≤ g(x)

Since g(x0) is the maximal value of g, we have g(x) = g(x0), and since x was arbitrary, g is
constant.

We turn to the proof of the theorem.
If X is �nite then, being minimal, it consists of a single periodic orbit, so T itself is equicon-

tinuous. Thus we may assume X is in�nite, and in particular, X has no isolated points. Also
X ×X has no isolated points.

Since X is not weak mixing, X ×X is not transitive, and hence, by Proposition ??, is is not
bi-transitive. Thus there exists an open set ∅ 6= U ⊆ X ×X such that V =

⋃∞
n=−∞ TnU is not

dense. Write Y = V and W = (X ×X) \ Y . Then Y is subsystem of X ×X with interior V
and complement W .

Let µ be an invariant probability measure on X giving positive mass to every non-empty
open set.

For A ⊆ X ×X we write
Ax = {y ∈ Y : (x, y) ∈ A}
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This is essentially the intersection π−1(x) ∩ Y of A with the �ber π−1(x) over x, where we
identify the �ber with X in the natural way. Now de�ne f : X → B denote the map

f(x) = 1Yx ∈ L1(µ)

On should think of this as mapping x to Yx, with the pseudo-metric on sets given by d(E,F ) =
µ(E4F ). This is the same as ‖1E − 1F ‖1 but the L1 space is convenient because it takes care
of identifying sets which di�er only in a nullset.

We de�ne the action of T on the image of f by

T (1Yx) = 1TYx

Our aim is to show that f is a factor map from X to its image, giving a non-trivial isometric
factor. Thus, we must prove three things:

1. The action of T on the image of f is isometric: d(f(Tx), f(Ty)) = d(f(x), f(y)).

2. Equivariance (i.e. that f(Tx) = Tf(x)).

3. Non-triviality of f (i.e. that the image of f consists of more than one point).

4. Continuity of f .

Equivariance : First notice that

YTx = {y : (Tx.y) ∈ Y }
= {y : (Tx, y) ∈ TY } because Y = TY

= {y : (x, T−1y) ∈ Y }
= {Tz : (x, z) ∈ Y }
= T{z : (x, z) ∈ Y }
= TYx

Isometry on the image :

d(f(Tx), f(Tx′)) = µ(YTx4YTx′)
= µ(TYx4TYx′)
= µ(T (Yx4Yx′))
= µ(Yx4Yx′)
= d(f(x), f(x′))

Non-triviality : The projection π is an open map, so πV, πW ⊆ X are open sets. Since
they are invariant and X is minimal, they are also dense, so their intersection is non-trivial.

Fix x ∈ πV ∩ πW and denote Z = f(x). Observe that Vx ⊆ X and Wx ⊆ X \ Z. By our
choice of x we have Vx,Wx 6= ∅, so by minimality of X, we can choose n so that T−nVx∩Wx 6= ∅.
We then have

T−nVx ∩Wx = T−nVx \ Z ⊆ Z4T−nZ

and conclude that Z4T−nZ has non-empty interior, and hence µ(Z4T−nZ) > 0; consequently
d(Z, T−nZ) > 0. This shows that the image of f does consists of more than one point.
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Continuity of f : We �rst claim that, given x0 ∈ X and an open neighborhood U of Yx0 , there
exists δ > 0 so that if d(x, x0) < δ then Yx ⊆ U . For if not, then there is a sequence xn → x0

in X, and a point yn ∈ Yxn \ U . Passing to a subsequence we may assume that yn → y0 ∈ X,
so y0 /∈ U . Now (xn, yn) → (x0, y0) and (xn, yn) ∈ Y , so (x0, y0) ∈ Y ; but this means that
y0 ∈ Yx0

⊆ U , contradicting y0 /∈ U .
Fix x0 ∈ X and let ε > 0. By regularity of the measure µ, we can choose a neighborhood U

of Yx0 so that
µ(U) < µ(Yx0

) + ε

Let δ > 0 be as in the previous paragraph for U . Now if d(x, x0) < δ then Yx ⊆ U , so

µ(Yx) ≤ µ(U) < µ(Yx0
) + ε

Setting g(x) = µ(Yx), this shows that g is lower semi-continuous. Also, since YTx = TYx, we
have

g(Tx) = µ(YTx)

= µ(TYx)

= µ(Yx) by invariance of µ

so g is invariant. By the lemm preceding the theorem, g is constant, i.e. µ(Yx) is independent
of x.

Finally, if d(x, x0) < δ, then Yx ⊆ U , so

µ(Yx \ Yx0
) ≤ µ(U \ Yx0

)

= µ(U)− µ(Yx0
)

< ε

and similarly µ(Yx0
\ Yx) < ε; so

d(f(x), f(x0)) = µ(Yx4Yx0)

= µ(Yx0 \ Yx) + µ(Yx \ Yx0)

< 2ε

and we have shown that f is continuous.

Corollary 6.22. If (X,T ) is a minimal system that is not weak mixing, then it admits non-
trivial continuous eigenvalues.

Proof. By the previous theorem, X has a non-trivial equicontinuous factor, which is a mini-
mal group rotation. This factor admits a non-trivial eigenfunction (see Section ??), and this
eigenfunction lifts to X by pre-composition with the factor map.
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7 Distal systems

Equicontinuous systems, when transitive, arise from a group translation; weak mixing systems,
which are precisely those which cannot factor onto non-trivial equicontinuous ones. From the
point of view of orbits the di�erence between these systems is also evident. In an equicontinuous
system, pairs of orbits cannot come close to each other, whereas in weak mixing system there
exist pairs of orbits which come close to each other and close to any other pair.

The question arrises what other kinds of behavior of pairs can occur. In this section and
the next, we examine distal systems, which are an important generalization of equicontinuity.
We shall eventually see that although they fall strictly betwen the two extremes above, minimal
distal systems nevertheless enjoy an explicit and elegant description as (possibly in�nite) �towers�
build from isometric components.

7.1 Distal systems

De�nition 7.1. A dynamical ystem (X,T ) is distal if it contains no proximal pairs, i.e., for
every distinct pair x, y ∈ X, there exists a δ = δ(x, y) > 0 such that d(Tnx, Tny) ≥ δ for all
n ≥ 0 (i.e. infn≥0 d(Tnx, Tny) > 0).

Although the metric appears in the de�nition, the property does not depend on the metric
and remains valid if the metric is replaced by an equivalent one.

Remarks and examples

1. Any isometric system is distal (take δ = d(x, y)). Thus, any equicontinuous system
is distal.

2. A weak mixing system (X,T ) with more than one point is not distal. Indeed, there
exists a transitive point (x, y) ∈ X × X. We cannot have x = y because then the
orbit is contained in the closed diagonal set ∆ = {(t, t) : t ∈ X}, and this is not all
of X × X. On the other hand, by transsitivity the orbit of (x, y) comes arbitrarily
close to (x, x), so infn∈N d(Tnx, Tny) = 0. This shows that the system (X,T ) is not
distal.

3. If a symbolic system X ⊆ ΛZ is distal, then it is �nite. This follows bacuse if X is
in�nite then by Proposition ?? it contains a pair x 6= x′ such that x+ = (x′)+, so
therefore d(Tnx, dnx′)→ 0, and X is not distal.

Theorem 7.2. The following are equivalent for a dynamical system (X,T ):

1. (X,T ) is distal.

2. Every point in X×X is uniformly recurrent (equivalently, X×X decomposes into minimal
sets).

3. Every point in the in�nite product (X×ω, T×ω) is uniformly recurrnt.

Proof. We �rst prove equivalence of (1) and (2).
For the �rst direction, we will show that if (X,T ) is distal, then it decomposes into min-

imal subsystems. Since distality of X implies distality of X × X, it follows that the product
decomposes in the same way.
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So suppose that X is distal and let x ∈ X. By Theorem ??, x is proximal to a uniformly
recurrnt y. But by distality there are no non-trivial proximal pairs, so x = y, hence OT (x) is
minimal. This shows that every point in X belongs to a minimal subsystem, and the claim is
proved.

In the other direction, suppose that X × X decomposes as above, and let x, y ∈ X with
x 6= y. Write z = (x, y) ∈ X ×X. Then Z = OT×T (z) is minimal. Now, ∆ = {(u, u) : u ∈ X}
is a subsystem of X ×X so Z ∩∆ is a closed T × T invariant set. If it were not empty, then
by minimality, Z ∩∆ = Z, i.e. Z ⊆ ∆. But then z = (x, y) ∈ ∆, contrary to assumption. So
Z ∩∆ = ∅, and it follows that inf d(Tnx, Tny) > 0, so x, y are distal.

With regard to (3), note that X×X is a factor of X×ω so (3) implies (2). On the other hand,
distality of X implies distality of X×ω, so (1) and (2) imply that every point in X×ω × X×ω
is uniformly recurrent, but this implies the same for X×ω (e.g. since it is a factor of X×ω ×
X×ω).

Corollary 7.3. If (X,T ) is distal then all of its points are uniformly recurrent.

Proof. X is a factor of X ×X. Apply the previous theorem.

Corollary 7.4. If (X,T ) is distal, then all of its factors are distal.

Proof. Suppose π : X → Y is a factor. Then there is an induced factor map ϕ : X×X → Y ×Y .
Since X is distal, X ×X is a union of minimal systems, and their images under ϕ are minimal,
also Y × Y is a union of minimal systems, which by the theorem again, implies that Y is
distal.

The condition that (X,T ) decompose into minimal subsystems is not strong enough to
ensure distality. As an example, we construct an in�nite subshift which is the union of minimal
subshifts; we already noted that in�nite subshifts are never distal.

Consider an in�nite minimal subshift X ⊆ {0, 1}Z, e.g. the Thue-Morse subshift. We shall
construct a sequence of periodic points x1, x2, . . . ∈ {0, 1}Z, with disjoint orbits Ci = OS(xi),
such that Y = X ∪

⋃∞
i=1 C

i is closed. Then Y decomposes into disjoint minimal subsystems
(Ci ∩ Cj = ∅ for i 6= j by construction, and Ci ∩ X = ∅ because it is the intersection of two
distinct minimal subshifts), and Y is not distal, because no in�nite subshift is distal.

In order to construct xi proceed as follows. Let an ∈ Ln(X) have ength n (so an is a word
that appears in some point in X) and for each n, choose bn so that

anbnan ∈ L(x)

One can always �nd such a word bn because, since X is minimal, an appears in every point
syndetically; if an appears in x ∈ X at index i and at index j > i then we can take bn =
x|[i+|an|,j−1].

Now take xn = . . . anbnanbnanbn . . . and let Cn be the (�nite) orbit of xn. Ley Y =
X ∪

⋃∞
n=1 C

n. This is clearly a union of minimal systems, and in particular is invariant..
We claim that Y is also closed. Indeed, since X is already closed, we only need to show that

if y = lim yn with yn ∈ Ck(n) then y ∈ Y . So �x such a sequence yn. If k(n) is bounded, we
will have y ∈ Ck for some k, so we may assume k(n)→∞. Now, Ln(xn) ⊆ L(X) and therefore
also every word of length at most n in xn belongs to L(X); so Lk(xn) ⊆ L(X) for all k ≤ n.
Given a subword of length k of y, the word must appear yn for arbitrarily large n, and hence
in xn for arbitrarily large n; in particular, for some n with k(n) > k (because k(n)→∞), and
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so it belongs to L(X). Since all �nite subwords of y belong to L(X) if follows that y ∈ X, as
claimed.

We conclude with another characterization of distality:

Theorem 7.5. Let (X,T ) be a dynamical system with enveloping semigroup E. Then X is
distal if and only if E is a group (i.e. all elements f ∈ E are invertible and f−1 ∈ E).

Proof. Clearly if x, y are proximal then there exists f ∈ E with f(x) = f(y), so E is not a group.
Now suppose that X is distal. Let f ∈ E ; we want to show that idX ∈ Ef = {Tnf}.
Let x1, . . . , xn ∈ X and ε > 0. Consider x = (x1, . . . , xn) ∈ X×n and let S = T×n. Since X

is distal, every point in X×n is uniformly recurrent. Letting U = ×ni=1Bε(xi), there is a k such
that for every n there is a 0 ≤ j(n) ≤ k with Sj(n)(Snx) ∈ U .

Now, for each j let I(j) ⊆ N denote those n such that j(n) = j. Then for some j0, we have f ∈
{T i}i∈I(j0). Thus T j0f(xi) ∈ Bε(xi) for i = 1, . . . , n. In other words, T j0f ∈ Ux1,...,xn,ε(idX).

It follows that idX ∈ {Tn}n≥0f = Ef .

Note that while E is a group when X is distal, it is still generally not a topological group.

7.2 Skew-products on the torus

Our �rst task is to provide interesting examples of distal systems which are not equicontinuous.
Non-minimal examples are not hard to �nd. For instance, the unit disk in C with the map
reiθ 7→ rei(θ+r) decomposes this way but is not distal. We leave the veri�catoin as an exercise.

We restrict ourselves to a single example which is typical of a class of constructions of distal
systems on tori. Let X = T2, let α ∈ R \Q and let T : X → X be

T (x, y) = (x+ α, y + x)

It is easy to check that this map is continuous and bijective. Notice that this is a skew product
in the sense of De�nition 5.12, with base (T, Rα) and cocycle rx(y) = y + x. Note that by
induction,

Tn(x, y) = (x+ nα, y +

n−1∑
k=1

(x+ kα))

= (x+ nα, y + (n− 1)x+
n(n− 1)

2
α) (4)

Claim 7.6. (X,T ) is distal.

Proof. Let us use the metric

d((y, z), (y′, z′)) = max{d(y, y′), d(z, z′)}

for T2. Fix z = (x, y) and z′ = (x′, y′) in T2, and suppose z 6= z′. We must show that ρ =
infn≥0 d(Tnz, Tnz′) > 0. If x 6= x′, then, since Rα is an isometry of T, we have d(Rnαx,R

n
αx
′) =

d(x, x′) for all n, so ρ ≥ d(x, x′) > 0. Otherwise x = x′, and then by (4), for every n ≥ 0 we
have

d(Tnz, Tnz′) = d(y, y′)

and again ρ > 0.
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Claim 7.7. (X,T ) is not equicontinuous.

Proof. Let 0 < δ < 1/4 and consider the points z = (x, y) and z′ = (x + δ, y) for any x, y ∈ T.
Then

d(z, z′) = δ

but by (4), as long as n < 1 + 1/4δ we have

d(Tnz, Tnz′) = δ + d((n− 1)x, (n− 1)(x+ δ))

= δ + (n− 1)δ

= nδ

In particular for every δ > 0 there exist points z, z′ which are δ-close and an n such that
d(Tnz, Tnz′) > 1/10. Therefore T is not equicontinuous.

Proposition 7.8. (X,T ) is minimal.

Proof. Let Y ⊆ X be a minimal subset and let π : T2 → T denote projection to the �rst
coordinate. Then π(Y ) ⊆ T is a subsystem of (T, Rα), so by minimality of the latter π(Y ) = T.

Let Fβ(x, y) = (x, y + β). Then Fβ is an automorphism of X (it is clearly a continuous
bijection, and one checks that TFβ = FβT ). Therefore, FβY is a minimal subset of X for every
β. It follows that Y ∩ FβY is either empty, or all of Y . Let

E = {β ∈ T : FβY = Y }

This is a closed subgroup of (T,+). Therefore, E is either �nite, or all of T. Note that π−1(x)
is a coset (translate) of E for every x ∈ T.

Thus, if E is all of T, then π−1(x) ∩ Y = T for all x ∈ T, so X = T2.
It remains to rule out the possibility that E is �nite. If |E| = 1, then π−1(x) ∩ Y is a

singleton for all x ∈ T. This means that Y is the graph of a function and since it is closed, the
function is continuous. This is imposssible by the previous Lemma.

Finally, if 1 < |E| < ∞, then E consists of rational numbres, and there is a p such that
pq = 1 for all q ∈ E. Consider the map ϕ : T2 → T2 given by ϕ : (x, y) 7→ (x, py), and let
S(x, y) = (x+α, y+px). Then ϕ is a factor map and Y ′ = ϕ(X) is a minimal subset of (T2, S).
Evidently, the group E′ = {θ ∈ T : FβY

′ = Y ′} is just

E′ = pE = {e}

This means that over every point α ∈ T there is a unique points in Y ; that is, Y ′ is a graph.
It is furthermore a graph of a continuous function, because the graph is closed. The proof is
concluded by showing that this is impossible:

Lemma 7.9. For every p ≥ 1 and every continuous function g : T→ T, the graph Z of g is not
S-invariant.

Proof. Suppose there is a S-invariant graph of a continuous function g.
Let 0 < δ < 1/8p be small enough that d(g(x), g(x+ δ)) < 1/8 for every x ∈ T.
Let x ∈ X, and let z = (x, g(x)) and z′ = (x + δ, g(x + δ)). By a similar calculation as in

Claim 7.7, for n ≤ 1/4δ, we have

d(Snz, Snz′) = max{δ, d(g(x), d(x+ δ)) + npδ}
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Write Snz = (xn, yn) and Snz′ = (x′n, y
′
n). Since the orbits of z, z′ remain inside the graph of

g, we have yn = g(xn) and y′n = g(x′n). Also, xn = x+ αn and x′n = x′ + αn+ δ so

d(xn, x
′
n) = δ

Thus for n = [1/4δ],

d(g(xn), g(x′n) ≥ d(yn, y
′
n)

= npδ + d(g(x), g(x+ δ))

≥ 1/8

Since we can �nd such points for arbitrarily small δ. This contradicts continuity of g.

A theorem of Hardy and Littlewood

We have obtained the example we were after, but now digress to show an application to dio-
phantine approximation. We have seen that if α is irrational, then Nβ is dense modulo one (this
is minimality of the rotation Rα). What about thinner sets of multiples, e.g. {n2β}n∈N? This
is no longer the orbit of a point in a dynamical system, but it turns out that density does hold
as long as β is irrational:

Theorem 7.10 (Hardy-Littlewood). Let p be any real polynomial with at least one non-constant
coe�cient irrational. Then {p(n)}n∈N is dense modulo one.

Let us demonstrate the special case of n2β. Observe that given β, let α = 2β, and consider
the orbit of (β, 0) in the system (X,T ) above. By (4),

Tn(β, β) = (β + nα, β + (n− 1)β +
n(n− 1)

2
α)

= (β + nα, β(1 + (n− 1) + n(n− 1)))

= (β + nα, n2β)

Since (X,T ) is minimal, the orbit is dense, and, in particular, its projection to the second
coordinate is dense in T. This is precisely density modulo one of n2β.

A similar proof can be given for any quadratic polynomial � by choosing α and the initial
point x, y, one can ensure Tn(x, y) = (Rnαx, p(n)).

In order to deal with polynomials of degree d, one needs to prove minimality of the map on
Td given by

Td(x1, . . . , xd) = (x1 + α, x2 + x1, x3 + x2, . . . , xd + xd−1)

Then by a suitable choice of α and the initial point (X1, . . . , xd) the last coordinate reduces
again to p(x). In order to prove minimality, one can proceed by induction; but the induction
step is not quite like the base step that we did above, because for d = 1 the map is an isometry,
while for larger d it is not, as we have seen. Nevertheless a argument similar to our proof for
d = 2 can be done. We leave the details to the exercises.
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7.3 Isometric Extensions

In this section we present a structure theorem for minimal distal systems. Roughly speaking,
we will see that they qre built up from isometric components.

De�nition 7.11. A factor π : (X,T )→ (Y, S) is called an isometric extension if there exists
a continuous function d : X ×X → [0,∞) such that

1. The restriction of d to each �ber π−1(y) is a metric.

2. If x1, x2 ∈ π−1(y) then d(Tx1, Tx2) = d(x1, x2).

Note that continuity and compactness of the �bers π−1(y) imply that the restruction of d
to a �ber is equivalent to the original metric on the �ber.

Examples

1. An isometric map is an isometric extension of the 1-point system, and vice verse � an
isometric extension of the 1-point system is isometric.

2. The map T (x, y) = (x + α, y + x) on T2 is an isometric extension of (T, Rα). Here the
�bers are copies of T, which we endow with the usual metric, and the �ber {x} × T is
mapped to {x+ α} × T by translation by x.

This example shows that an isometric extension of an isometric extension need not be an
isometric extension itself. To see this, consider (T, Rα) as an isometric extension of the
one-point system.

3. More generally, if (Y, S) is any system and Z is a metric space, given a continuous map
f : Y → isom(Z), y 7→ fy, we can form the skew-productX = Y ×Z, T (y, z) = (Sy, fy(z)),
and this is an isometric extension.

Not every isometric extension arises as a skew product like the last example. Indeed, the map
(T, Rα) → (T, R2α), x 7→ 2x, is an isometric extension because each �ber contains two points,
and the map between them is an isometry in the usual metric on T. But T is not a product of
itself with two points.

Proposition 7.12. If (Y, S) is distal and (X,T ) is an isometric extension of Y then X is distal.

Proof. The proof is imilar to Lemma ??. Given x1, x2 ∈ X and π : X → Y , either π(x1) 6= π(x2),
in which case by distality of Y we have infn dY (Snx1, S

nx2) > 0 and so also for the orbits in X,

or else x1, x2 are in the same �ber of π−1(y0), in which case for a function d̃ as in the de�nition

of an isometric extension, d̃(Tnx1, T
nx2) = d̃(x1, x2) > 0 and so Tnx1, T

nx2 cannot accumulate
on any diagonal point (x, x), giving distality again.

Proposition 7.13. Suppose that . . . (Xn, Tn)
πn−−→ (Xn−1, Tn−1)→ . . .→ (X0, T0) is a directed

system of factors with (X0, T0) distal and all extensions isometric. Let (X,T ) denote the inverse
limit. Then (X,T ) is distal.

Proof. Using the previous proposition we see by induction that all (Xn, Tn) are distal. Now if
x1, x2 ∈ X, then there is some n such that the images of x1, x2 in (Xn, Tn) are distinct, and
therefore infk d(T knx1, T

k
nx2) > 0. This immediately implies the same in X.
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Now suppose (X,T ) is a minimal distal system. Being distal, it is not weak mixing, so by
Theorem 6.20 it has a non-trivial equicontinuous, and hence distal, factor X → X0. Now, X
may be an isometric extension of X0, but if not, we would like to �nd an isometric extension
of X0 sitting between them, X → X1 → X0. If we can carry out this basic step, then we can
iterate it, eventually exhausting X.

In order to carry out this plan we need a construction called the relative product over a
factor. Let π : (X,T )→ (Y, S) be a factor map and form the set

X ×Y X = {(x1, x2) ∈ X ×X : π(x1) = π(x2)}

Evidently, this set is closed and T × T -invariant, so it is a subsystem of X × X. There is
a natural factor π̃ : X ×Y X → Y given by π̃(x1, x2) = π(x1) = π(x2), and notice that
π̃−1(y) = π−1(y) × π−1(y). So over every point in Y we have the full product of the �ber
π−1(y).

If X → Y is a factor map, we say that X is weak mixing relative to Y X ×Y X is
transitive. Note that weak mixing is weak mixing relative to the trivial one-point factor (since
then the relative product is the full product). Observe that a distal system cannot be weak
mixing over any non-trivial factor.

7.4 The Distal Structure Theorem

The following theorem is an exact analog of Theorem 6.20 but �relative to a factor�.

Theorem 7.14. Let π : (X,T ) → (Y, S) be a factor map between minimal systems. Suppose

that X is not weak mixing relative to Y . Then there exists an intermediate factor X
π2−→ Z

π1−→ Y
such that π = π1π2 and such that Z → Y is a non-trivial isometric extension.

We will not prove this, but note that when Y is the one point system this is precisely Theorem
6.20.

The last theorem is the inductive step in the following deep characterization of distal systems:

Theorem 7.15 (Furstenberg). Let X be a minimal distal system. Then there is a countable
ordinal α, a family of systems (Xi)i<α and factor maps πi : Xi+1 → Xi for i < α, such that

1. Each factor map πi is an isometric extension,

2. If β ≤ α is a limit ordinal then Xβ is the inverse limit of the directed system of factors
(Xi)i<β,

3. Xα = X.
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8 Topological Entropy

We now take a large swing, from systems with some algebraic structure to �large�, �chaotic�
systems. The primary example to have in miond are full shifts and shifts of �nite type. Our
aim is to develop invariants that can distinguish between them.

Consider {0, 1}Z and {0, 1, 2}Z. Certainly the former feels �smaller� than the latter.One can
make several observations:

� As topological spaces, the two are homeomorphic.

If one asks about embedding the systems one in the other, we have

� {0, 1}Z factors injectively into {0, 1, 2}Z (in fact, since {0, 1} ⊆ {0, 1, 2}, it is even a
subsystem).

� {0, 1, 2}Z cannot factor injectively into {0, 1}Z because it has more �xed points.

However, what about factoring onto one another?

� {0, 1, 2}Z factors onto {0, 1}Z (by the sliding block code taking 0→ 0 and 1, 2→ 1).with
our present knowledge, we are unable to answer the following question:

� Can {0, 1}Z factor onto {0, 1, 2}Z ..... ???

With our present knowledge we cannot answer this question.
One can also note that the obstruction to embedding these spaces into each other involves

periodic points. What happens when there are none? For example

� When can (X,T ) factor injectively into {0, 1}Z (assuming there is no topological obstruc-
tion, i.e. X is totally disconnected)?

Topological entropy, which we study in this section, provides an invariant that can answer this
question in the negative.

8.1 De�nition (via covers)

Let (X,T ) be a topological dynamical system.

De�nition 8.1. .

1. An open cover of X is a collection of open sets whose union is X.

2. If U ,V are open covers of X their join is

U ∨ V = {U ∩ V : U ∈ U , V ∈ V}

it is also an open cover of X. More generally if Ui are open covers then

n∨
i=1

Ui = {U1 ∩ . . . ∩ UN : U1 ∈ U1, . . . , Un ∈ Un}

and this is again an open cover.
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3. An open cover U re�nes an open cover V if every U ∈ U is a subset of some V ∈ V

4. If T : X → X is a continuous map then T−1U = {T−1U : U ∈ U} is an open cover.

Lemma 8.2. .

1. T−1(U ∨ V) = T−1(U) ∨ T−1(V).

2. If U re�nes V then T−1(U) re�nes T−1(V).

This is an exercise.

De�nition 8.3. For an open cover U we denote

N(U) = min{|V| : V ⊆ U is an open cover}

and
H(U) = logN(U)

Remark 8.4. By compactness, every open cover has a �nite sub-cover, so N(U) ∈ N.

Lemma 8.5. .

1. N(U) ≥ 1 and H(U) ≥ 0, with equality if and only if X ∈ U

2. U re�nes V implies N(U) ≥ N(V) and H(U) ≥ H(V).

3. H(U ∨ V) ≤ H(U) +H(V).

4. H(T−1U) ≤ H(U) and if T is onto then equality.

Theorem 8.6. limn→∞
1
nH(

∨n−1
i=0 T

−iU) exists for every open cover U of X, and the limit is
equal to the in�mum of the sequence.

Proof. Write an = H(
∨n−1
i=0 T

−iU). Then

am+n = H(

(m+n)−1∨
i=0

T−iU)

= H(

m−1∨
i=0

T−iU ∨
(m+n)−1∨
i=m

T−iU))

≤ H(

m−1∨
i=0

T−iU) +H(

(m+n)−1∨
i=m

T−iU))

≤ H(

m−1∨
i=0

T−iU) +H(

n−1∨
i=0

T−iU))

= am + an

and the claim follows from sub-additivity, using the following:
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Lemma 8.7 (Fekete's lemma). Let (an)∞n=1 be a sequence satisying

am+n ≤ am + an

Then an/n converges and lim 1
nan = infn

1
nan.

Proof. We prove this in case the sequence is bounded below (this is the case in our application
to entropy). When it is not bounded the proof is similar.

Let

α = inf
n∈N

1

n
an

Let ε > 0 and let n0 be such that an0/n0 < α + ε. For any n ≥ n0 write n = kn0 + r with
0 ≤ r < n0. Then

an ≤ an−n0 + an0

≤ an−2n0 + 2an0

. . .

≤ ar + kan0

= ar + kn0 ·
1

n0
an0

Writing c = max{a0, . . . , an0−1}, noting that k ≤ n/n0, and using an0/n0 < α+ ε we conclude
that

an < c+ n(α+ ε)

dividing by n we have
1

n
an ≤ α+ ε+

c

n

so lim sup 1
nan ≤ α+ ε and since ε > 0 is arbitrary, lim sup 1

nan ≤ α. Of course lim inf 1
nan ≥ α

since α is the in�mum of the sequence, and we conclude that lim 1
nan = α.

De�nition 8.8. The topological entropy of (X,T ) and an open cover U is

htop(T,U) = lim
n→∞

1

n
H(

n−1∨
i=−0

T−iU)

Proposition 8.9. .

1. 0 ≤ htop(T,U) ≤ H(U).

2. If U re�nes V then htop(T,U) ≥ htop(T,V).

Proof. (1) follows from the fact that the limit in the de�nition of entropy is the in�mum of a
sequence of which H(U) is the �rst term.

(2) follows from the fact the if U re�nes V then
∨n−1
i=0 T

−iU re�nes
∨n−1
i=0 T

−iV.
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De�nition 8.10. The topological entropy of (X,T ) is

htop(T ) = sup{htop(T,U) : U is an open cover of X}

Sometimes we write htop(X) instead of htop(T ) when T is �xed, and the set X varies (e.g. when
T is the shift and we vary over sub-systems).

Remark 8.11. We can take the sup over �nite sub-covers.

Proposition 8.12. .

1. htop(T ) ≥ 0 (obvious).

2. If T is invertible then htop(T ) = htop(T
−1) (this is an exercise!)

Theorem 8.13. If Y ⊆ X is a subsystem then htop(T ) ≥ htop(T |Y ).

Proof. Let U be an open cover of Y . Each U ∈ U is relatively open in Y so there exists an open
set U ′ ⊆ X such that U = U ′∩Y . Let U ′ = {U ′}U∈U∪{X\Y }. This is an open cover of X. Note
that T−kU ′ = {T−kU}U∈U ∪ {T−k(X \ Y )}, and T−k(X \ Y ) ⊆ X \ Y because by assumption

TY ⊆ Y . Thus T−k(X \Y )∩Y = ∅, so if V ∈
∨n−1
i=0 T

−iU ′ intersects Y non-trivially, it must be

of the form
⋂n−1
i=0 T

−iU ′i (otherwise there is a set of the form T−i(X\Y ) in the intersection which

is impossible). Thus if {V ′j } ⊆
∨n−1
i=0 T

−iU ′ is a subcover then {Vj∩Y } is an open cover of Y and

consists of sets of the form (
⋂n−1
i=0 T

−iU ′i)∩Y = (
⋂n−1
i=0 T

−iUi)∩Y . Thus the number of V ′j must
be at least as large as N(

∨n−1
i=0 T

−iU), which implies that htop(T ) ≥ htop(T,U ′) ≥ htop(T |Y ,U).
The claim follows.

Theorem 8.14. If (Y, S) is a factor of (X,T ) then htop(T ) ≥ htop(S).

Proof. Let π : X → Y be a factor map. If U is an open cover of Y then π−1U = {π−1U :

U ∈ U} is an open cover of X and N(π−1U) = N(U). Also π−1(
∨n−1
i=0 S

−iU) =
∨n−1
i=0 T

−iπ−1U .
Combining these two facts we �nd that htop(T, π

−1U) = htop(S,U). This shows that

htop(T ) = sup
V
htop(T,V) ≥ sup

U
htop(S,U) = htop(S)

Corollary 8.15. Isomorphic systems have the same topological entropy.

8.2 Expansive systems

Recall: (X,T ) is (forward) expansive if there is an ε > 0 such that for every x, y ∈ X with
X 6= y there is an n ∈ N such that d(Tnx, Tny) > ε. It is two-sided expansive if T is invertible
and the same holds but allowing n ∈ Z. The constant ε is called the expansiveness constant.

Lemma 8.16. If ε is as in the de�nition of expansiveness, then for every δ > 0 there is an
N = N(δ) such that if x, y ∈ X and d(x, y) ≥ δ then there is an n ∈ {0, 1, . . . , N − 1} with
d(Tnx, Tny) > ε.

Proof. If not then there is some δ > 0 such that for every N there is a pair xN , yN ∈ X with
d(xN , yN ) ≥ δ and d(Tnxk, T

nyk) ≤ ε for all 0 ≤ n < N . Passing to subsequence we can assume
that xNk → x and yNk → y. Evidently d(x, y) ≥ δ, so x 6= y, but for every n we have n < Nk for
all large k and by continuity of T , d(Tnx, Tny) = lim d(TnxNk , T

nyNk) ≤ ε. This contradicts
expansiveness.
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Lemma 8.17. For any cover U and any N , htop(T,U) = htop(T,
∨N−1
i=0 T−iU).

Proof. Since
∨N−1
i=0 T−iU re�nes U we certainly have ≤. For the other direction write V =∨N−1

i=0 T−iU and notice that
M−1∨
i=0

T−iV =

(N+M)−1∨
i=0

T−iU

hence

htop(T,V) = lim sup
1

n
logN(

n−1∨
i=0

T−iV)

= lim sup
1

n
logN(

n+N−1∨
i=0

T−iU)

= htop(T,U)

Proposition 8.18. If (X,T ) is expansive with expansive constant ε, and U is a cover of X by
sets of diameter ≤ ε, then htop(T ) = htop(T,U).

Proof. It su�ces to show that for every open cover V we have htop(T,U) ≥ htop(T,V).
Let δ be a Lebesgue covering number of V, so for every x ∈ X we have Bδ(x) ⊆ V for some

V ∈ V.
Let N = N(δ) be as in the lemma and U ′ = N(

∨N−1
i=0 T−iU). We claim that every element of

U ′ has diameter ≤ δ. Indeed, if d(x, y) ≥ δ then there is some 0 ≤ n < N with d(Tnx, Tny) > ε,
and hence Tnx, Tny cannot both belong to the same element of U , hence x, y do not belong to
the same element of T−nU . This shows that every x, y which belong to the same element of U ′
satisfy d(x, y) < δ as claimed.

It follows that U ′ re�nes V, hence htop(U ′) ≥ htop(V). But htop(U) = htop(U ′) be the previous
lemma and the proposition follows.

Corollary 8.19. An expansive map has �nite topological entropy.

Example

Let X = AN for a �nite set A and T the shift. Then htop(T ) = log |A|.
Indeed, de�ne the metric by

d(x, y) = 2−n where n = min{i ∈ N : xi 6= yi}

Note that if x1 6= y1 then d(x, y) ≥ 1
2 . Since x 6= y implies that xn 6= yn for some n, and

(Tnx)1 = xn 6= yn = (Tny)1, we have d(Tnx, Tny) ≥ 1
2 , so T is expansive with constant 1

2 . Also
note that if x1 = y1 then d(x, y) ≤ 1

4 , so the cylinder sets

[a] = {x ∈ X : x1 = a}

are open (and closed) sets of diameter 1
4 . By the proposition, htop(T ) = htop(T,U) for the

partition U = {[a] : a ∈ A}. Finally,
∨n
i=1 T

−iU is the partition of X according tot he initial
n-segments of sequences x ∈ X and consists of |A|n pairwise disjoint sets, so it has no proper

subcovers and N(
∨n−1
i=0 T

−iU) = |A|n. Thus htop(T,U) = log |A|, as claimed.
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Corollary 8.20. Let A,B be �nite sets. If |B| > |A| then there is no factor map from AZ → BZ.

Corollary 8.21. Let A be a �nite set. If (X,T ) is a system and htop(T ) > log |A| then there
is no injective factor map X → AZ.

Proof. If π : X → AZ is an injective factor map let Y = π(X). This is a subsystem of AZ and
is isomorphic to X via π, so

htop(X) = htop(Y ) ≤ htop(AZ) = log |A|

Example 8.22. Let A be �nite and X ⊆ AZa sybsystem. Let

Ln(X) = #{w ∈ An : w appears in X}

Then htop(T |X) = limn→∞
1
n logLn(X).

Indeed, T is expansive with the same constant as before so for the partition U into cylinders
[a] ∩ X, a ∈ A, we have again htop(T |X) = lim 1

m logN(
∨n−1
i=0 T

−iU). But N(
∨n−1
i=0 T

−iU) =
Ln(X) and the claim follows.

8.3 Spanning and separating sets

De�nition 8.23. Let (X, d) be a compact metric space and ε > 0.

1. The ε-covering number cov(X, d, ε) is the minimal number of points in an ε-dense set, i.e.

cov(X, d, ε) = min{n : ∃x1, . . . , xn ∈ X s.t. X =

n⋃
i=1

Bε(xi})

2. The ε-separation number, sep(X, d, ε), is the maximal number of ε-separated points, i.e.

sep(X, d, ε) = max{n : ∃y1, . . . , yn ∈ X s.t. d(yi, yj) > ε for all i 6= j}

Remarks

1. By compactness, both numbers are �nite.

2. If ε′ < ε then cov(X, d, ε′) ≥ cov(X, d, ε) and sep(X, d, ε′) ≥ sep(X, d, ε).

Lemma 8.24. cov(X, d, ε) ≤ sep(X, d, ε) ≤ cov(X, d, ε/2)

Proof. Suppose that x1, . . . , xn is a maximal ε-separated set, so n = sep(X, d, ε). If X 6⊆⋃
Bε(xi) there is an x ∈ X such that d(x, xi) ≥> ε for all i and then x1, . . . , xn, x would also be

ε-separated, contradicting maximality. HenceX =
⋃
Bε(xi) and cov(X, d, ε) ≤ n = sep(X, d, ε).

On the other hand if X =
⋃m
i=1Bε/2(yi) then for any ε-separated set x1, . . . , xn, no two of

the points xi are in the same ball Bε(yj), but each xi is in at least one such ball, hence n ≤ m.
It follows that cov(X, d, ε/2) ≥ sep(X, d, ε).
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8.4 Bowen's de�nition of entropy

De�nition 8.25. If (X,T ) is a topological dynamical system, d a metric on X, then we de�ne

dn(x, y) = max
0≤i≤n−1

d(Tnx, Tny)

This is a new metric on X.
Observe that the ε-ball around x in dn is

⋂n−1
i=0 Bε(T

nx).

De�nition 8.26. For ε > 0, let

hsep(T, d, ε) = lim sup
n→∞

1

n
log sep(X, dn, ε)

hcov(T, d, ε) = lim sup
n→∞

1

n
log cov(X, dn, ε)

Also let

hsep(T, d) = lim
ε→0

hsep(T, ε)

= sup
ε→0

hsep(T, ε)

and

hcov(T, d) = lim
ε→0

hcov(T, ε)

= sup
ε→0

hcov(T, ε)

Note: Since cov(X, d, ε/2) ≥ sep(X, d, ε) ≥ cov(X, d, ε) we have

hcov(T, d, ε) ≤ hsep(T, d, ε) ≤ hcov(T, d, ε/2)

so
hsep(T, d) = hcov(T, d)

Lemma 8.27. hsep(T ), hcov(T ) are independent of the metric (depend only on the topology).

Proof. Let d, d′ be two metrics compatible with the topology on X. For every ε > 0 there is an
ε′ > 0 such that if d′(x, y) < ε′ then d(x, y) < ε. Thus B′ε′(x) ⊆ Bε(x), where B′ denotes the ball
with respect to d′. It follows that cov(X, d′, ε′) ≥ cov(X, d, ε) and cov(X, d′n, ε

′) ≥ cov(X, dn, ε).
Hence hcov(T, d

′, ε′) ≥ hcov(T, d, ε). Hence

hcov(T, d
′) = sup

ε′
hcov(T, d, ε

′) ≥ sup
ε
hcov(T, d, ε) = hcov(T, d)

The other inequality is symmetric. The claim about hsep follows from the fact that it is the
same as hcov.

In view of the last lemma, from now on we drop the metric from the notation and write
hcov(T ), hsep(T ).

Example 8.28. If T is an isometry, then dn = d. Hence cov(X, dn, ε) = cov(X, d, ε) is inde-
pendent of n and 1

ncov(X, dn, ε)→ 0. Taking ε also, we have hcov(T ) = 0.
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8.5 Equivalence of the de�nitions

For an open cover U write
diamU = max{diamU : U ∈ U}

.

Proposition 8.29. Let Un be open covers with diamUn → 0. Then

htop(T ) = lim
n→∞

htop(T,Un)

Proof. First, for any open cover V, let δ be a Lebesgue number for V. Then for large enough n we
have that diamUn < δ so Un re�nes V and htop(T,Un) ≥ htop(V). In particular, taking V = Un0

,
this shows that limhtop(T,Un) exists, and that the limit is at least as large as supV htop(T,V).
Since it also does not exceed this supremum and the supremum is equal by de�nition to htop(T ),
we are done.

Proposition 8.30. If U is an open cover with Lebesgue number δ then

N(

n−1∨
i=1

T−iU) ≤ cov(X, dn, δ) ≤ sep(X, dn, δ)

Proof. We have already seen the right inequality. For the left one, notice that in the metric
dn the open cover

∨n−1
i=0 T

−iU has Lebesgue number δ. Therefore if Un is an optimal cover

of (X, dn) by δ/2 balls, then its elements have diameter δ and it re�nes
∨n−1
i=0 T

−iU . Thus

N(
∨n−1
i=1 T

−iU) ≤ N(Un) = cov(X, dn, δ/2).

Proposition 8.31. If U is an open cover with diamU ≤ ε, then

cov(X, dn, ε) ≤ sep(X, dn, ε) ≤ N(

n−1∨
i=0

T−iU)

Proof. The left inequality was already proved. For the right one, note that if x1, . . . , xm is
ε-separated in dn then for each xi, xj there is some 0 ≤ k ≤ n− 1 such that d(T kxi, T

kxj) > ε.
This means that T kxi, T

kxj do not lie in a common element of U , equivalently xi, xj do not lie

in a common element of T−kU , so they do not lie in a common element of
∨n−1
i=0 T

−iU . This

means that a sub-cover of
∨n−1
i=0 T

−iU must contain at least m sets. Taking a maximal separated

set, with m = sep(X, dn, ε), we �nd that N(
∨n−1
i=0 T

−iU) ≥ sep(X, dn, ε).

Theorem 8.32. htop(T ) = hsep(T ) = hcov(T ).

Proof. Let Un be open covers with diamUn < 1/n , so

htop(T ) = lim
n→∞

htop(T,Un)

Now for each n, by the previous proposition with ε = 1/n,

htop(T,Un) = lim sup
N→∞

1

N
logN(

N−1∨
i=0

T−iUn)

≥ lim sup
N→∞

1

N
log cov(X, dn, 1/n)

= hcov(T, d, 1/n)
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so taking n→∞ we conclude
htop(T ) ≥ hcov(T )

On the other hand let δn be the Lebesgue covering number of Un and note that δn ≤ diamUn →
0. Then by the other proposition,

htop(T,Un) = lim sup
N→∞

1

N
logN(

N−1∨
i=0

T−iUn)

≤ lim sup
N→∞

1

N
log cov(X, dn, δn/2)

= hcov(T, d, δn/2)

again taking n→∞ we obtain
htop(T ) ≤ hcov(T )

as claimed.
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9 Shifts of �nite type and the Krieger embedding theorem

A shift of �nite type is a subshift de�ned as follows. Let G = (V,E) be a directed graph. Let
X = XG denote the set of directed vertex paths; i.e.

X = {(xn) ∈ V Z : (xn, xn+1) ∈ E}

(one can also de�ne the one-sided version but we don't). It is easy to verify that

1. X is shift invariant: if x ∈ X then adjacent coordinates of x are edges, and this property
is shift invariant (clearly holds for Sx).

2. X is closed. Indeed, x ∈ X if and only if Snx /∈ [uv] for every uv ∈ Ec, so X =
V Z \

⋃
uv/∈E

⋃
n∈Z S

−n[uv]. This is the complement of an open set, so X is closed.

3. X is non-empty if and only if there are arbitrarily long paths in G, if and only if there is
a cycle (closed path) in G.

For example, the system X from the previous example is a shift of �nite type. Indeed, we can
take V = {0, 1} and E = {(0, 0), (0, 1), (1, 0)}. Then paths through G = (V,E) are precisely
sequences of 0, 1 with no two consecutive 1s.

9.1 Strong irreducibility

Let G = (V,E) and XG be as above � the set of directed bi-in�nite paths in G.

For u, v ∈ V , we write u n−→ v if there exists a path u = u0u1 . . . un−1 = V of length n starting

at u and ending at v (so always u
0−→ u). Connectedness means that ∀u, v ∈ V ∃n ∈ N u

n−→ v.
The following is stronger:

De�nition 9.1. A directed graph G = (V,E) is strongly irreducible if there exists an

N = NG such that u
n−→ v for all u, v ∈ V and all n ≥ N .

Let A = (ai,j)i,j∈V be the adjacency matrix of G, so ai,j = 1 if (u, v) ∈ E and ai,j = 0
otherwise. Then (An)i,j is the number of paths of length n from i to j. We say that a matrix
is positive if all its entries are positive. Then strong irreducibility says that there exists N such
that An > 0 for n ≥ N . A weaker condition is that AN > 0 for some N . The weaker condition
implies the stronger one:

Lemma 9.2. G is strongly irreducible if and only if there exists an N such that u
N−→ v for all

u, v ∈ V .

Proof. One direction is clear. Suppose then that u
N−→ v for all u, v ∈ V and some N . This

just says that AN > 0. Now, for k ≥ 0 we have AN+k = ANAk. The matrix Ak has non-
negative entries and each column has at least one non-zero entry, because by connectedness
every v certainly has at least one length-k path ending at it. Every row of AN is positive,
thus for every u, v ∈ V the entry (ANAk)u,v is the inner product of a positive vector and a
non-zero non-negative vector, so AN+k = ANAk > 0. Since k ≥ 0 was arbitrary, we have strong
ireducibility.
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Example 9.3. A cyclic graph (V = Z/mZ and E = {(n, n + 1) mod 1}) is not strongly irre-
ducible, since any path from v to v is of length km for some k ∈ N.

Example 9.4. If G is connected and there exists u0 ∈ V with a loop ((u0, u0) ∈ E), then G
is strongly irreducible. Indeed, by conectedness there is an N0 such that for every v ∈ V there

m(v), n(v) such that v
m(v)−−−→ u0 and u0

n(v)−−−→ v. Then for any v, w, we can form a path

v
m(v)−−−→ u0

2N0−m(v)−n(w)−−−−−−−−−−−→ u0
n(w)−−−→ w

where in the middle segment we traverse the loop 2N0 −m(v)− n(w) times. This is a path of
length N = 2N0, and v, w were arbitrary, so by the lemma, G is strongly irreducible.

Fact 9.5. One can show that the �rst example is, in a way, the only obstruction to stong
irreducibility: if G is connected but not strongly irreducible, then there exists an m ≥ 2 and a
partition V = V0 ∪ . . . ∪ Vm−1 such that if u ∈ Vi and (u, v) ∈ E then v ∈ Vi+1 mod m. That is,
G �factors� onto a cycle.

One can further show that XG factors onto a cycle (as a dynamical system) if and only if G
is strongly irreducible.

9.2 Entropy of shifts of �nite type

Theorem 9.6. Suppose that G = (V,E) is strongly irreducible, |V | ≥ 2, and let X = XG. Then
htop(X) > 0.

Proof. Let u0 ∈ V and let a = u0u1 . . . uk−1 be a path from u0 to itself (by a cycle we mean that
(uk−1, u0) ∈ E), By strong irreducibility, there is an 0 ≤ i < k such that ui has more than one
edge going out of it; otherwise, the only path through u0 is the cycle a, and by connectedness
this is the whole graph, contradicting strong irreducibility. Let b = u′0 . . . u

′
m−1 be another

simple cycle starting at u0, such that u0 = u′0,. . ., ui = u′i and ui+1 6= u′i+1 (we can choose such
u′i+1 by by choice of i, and then return to u0 by conectedness).

Now it is simple to see that each concatenation c1c2 . . . cn with cj ∈ {a, b} is a legal path in
G, and hence a word appearing in XG.

Assume, without loss of generality, that k ≥ m. Then for any ` we can write ` = `′k + n
where n ≤ k, and note that `′ = `/k + o(1) as ` → ∞. Every concatenation c1 . . . c`′ as above
can be extended to a path of length ` in G, and we conclude from the discussion that

|L`(XG)| ≥ 2`
′

= 2`/k+o(1)

Thus

htop(XG) = lim
`→∞

1

`
log |L`(XG)| ≥ 1

k
> 0

We can be more precise. For a matrix A let λ1, . . . , λ|V | denote the eigenvalues of the
adjacency matrix A of G (listed with multiplicity) and let

λmax = λmax(A) = max
i
|λi|

.
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Lemma 9.7. For any |V | × |V | matrix A, we have limn→∞
1
n log ‖An‖ = λmax(A) (it does not

matter which norm we take since all norms on M|V |(R) are equivalent).

Proof. First suppose that A is in Jordan form, so it has λis on the diagonal, some 1s on the
diagonal above the main one, and the rest is zeros. Each Joedan block of dimension ` × ` has
the form

λI +N

for λ ∈ {λi} and N a matrix with 1 above the diagonal and all other entries 0, so that N `+1 = 0.
Then An is a block matrix and the corrsponding block is (using commutation of I and N):

(λI +N)n =

n∑
k=0

(
n

k

)
λn−kNk

=
∑̀
k=0

(
n

k

)
λn−kNk

= λnp(n)

where p(n) is a non-zero matrix whose entries are polynomial polynomial in n and whose con-
stants depend on λ and `. Since the entries of the matrix grow as λn up to a polynomial
correction (and other entries are 0), it follows that

lim
n→∞

1

n
log ‖(λI +N)n‖∞ = log λ

Since these blocks make up An, we �nd that

lim
n→∞

1

n
log ‖An‖∞ = log λmax

In general let C = B−1AB be the Jordan for of A, with B a complex matrix. De�ne a norm
on M|V |(R) by ‖U‖ =

∥∥B−1UB
∥∥
∞. Then by the above 1

n log ‖An‖ → λmax. As noted in the
statement, it does not matter which norm we use, so this proves the claim.

Theorem 9.8. If G is strongly irreducible and X = XG then htop(X) = log λmax.

Proof. Let A be the adjacency matrix of G. Then the number of words of length n in X is just
the numberof paths of length n in G, which is the sum of entries of An. . This sum is just ‖An‖1,
so by the lemma (using the fact that the entropy of G ispositive to deduce lim 1

n log ‖A‖n > 0),

1

n
log |Ln(X)| = 1

n
log ‖An‖1 → log λmax

as claimed.

9.3 Subsystems of shifts of �nite type

A shift of �nite type certianly has subsystems: for example take any cycle, it gives a periodic
point in XG. It is elementay to show that
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Proposition 9.9. If G is connected then the periodic points are dense in XG and XG is tran-
sitive.

We now consider the subsystems of shifts of �nite type, and speci�cally their entropy (which
is a measure of how �large� they are). First, every subsystem has less-or-equal entropy than the
original. For shifts of �nite type, equality is not an option.

We �rst need a combinatorial fact. Let h : [0, 1]→ R denote the function

h(t) = −t log t− (1− t) log(1− t)

Then h(t) ≥ 0 for t ∈ (0, 1) and we extend it to the endpoints 0, 1 by continuity. Then
h(0) = h(1) = 0.

For ε > 0 and a �nite set I write J ∼ εI if J ⊆ I and ε|I| ≤ |J | < ε|I|+ 1.

Lemma 9.10. Let I be a �nite set and 0 < ε < 1/2. Then

#{J ⊆ I : J ∼ εI} = 2h(ε)n+o(n)

Proof. By Stirling's formula, k! = (ne )neo(n). Let n = |I| and k = dεne. Then(
n

k

)
=

n!

k!(n− k)!

=
(n/e)n

(k/e)k((n− k)/e)n−k
eo(n)−o(n−k)−o(k)

= 2n logn−k log k−(n−k) log(n−k)−o(n)

= 2−k log(k/n)−(n−k) log((n−k)/n)−o(n)

= 2nh(ε)+o(n)

using the fact that k/n = εn+ o(1) and (n− k)/n = (1− ε)n+ o(1).

Theorem 9.11. Let X = XG be a shift of �nite type with G strongly irreducible. Let Y ⊆ X
be a subsystem. If Y 6= X then htop(Y ) < htop(X).

Note that in general a subsystem can have the same entropy as the super-system. For
example let X ′ be an identical copy of X, and Z = X ∪ X ′. Then Ln(Z) = 2Ln(X), so
htop(Z) = htop(X), but X ⊆ Z has the same entropy and is a proper subsystem.

Proof. Suppose that Y ⊆ X is given. Then there is some cylinder in X that is disjoint from Y
(since X \ Y is a non-trivial open set). In other words, there is a word a ∈ V ∗ that appears in
X but not in Y .

We will show that htop(X) > htop(Y ) + δ, where δ > 0 depends only on the length of a and
the length N = NG in the de�nition of storng irreducibility.

Let |a| = k and assume that N > 10k (if not, increase N as necessary to achieve this).
Fix a large n and let I = {N, 2N, . . . , (k − 1)N} ⊆ {0, . . . , n − 1}, where k = [n/N ]. For

each J = {j1 < j2 < . . . < jm} ⊆ I, let L(J) ⊆ L(X) denote the set of words w constructed as
follows.

1. For each j ∈ J , set wj . . . wj+k−1 = a.

73



2. For each consecutive pair i < j in J , choose wi+k+Nwi+N+1 . . . wj−N ∈ Lj−i−(k+2N)(Y ).
We do this also for the words w1 . . . wj1−N and wjm+k+N . . . wn at the beginning and end
of w.

3. Now w consists of paths in G separated by �gaps� of length N before and after the copies
of a de�ned in step 1. For each such �gap�, complete the word to a path (we can do so by
de�nition of N).

Note that for di�erent J ⊆ I, the sets L(J) are disjoint. This is because, given any w ∈ L(J),
we can identify J by the positions of copies of a in w. Indeed, in the part of w words de�ned
in step (2), there are no a's, since Y ∩ [a] = ∅ by choice of a. So an a can appear only at point
j ∈ J , as de�ned in step (1), or possibly in positions which intersect the N locations to the right
and left of the words de�ned in (1). But since N > 10k, these potential copies of a are distinct
and each is within 3k of a unique i ∈ I. Thus, the locations of a in w determins J .

We estimate |L(J)|. Let J = {j1 < j2, . . . < jm}. Then for each j` we make an independent
choice in step (2) of a word of length j`+1 − j` − (k + 2N) from Y . The number of words of
length L in Y is ≥ 2htop(Y )L (because htop(Y ) = infL

1
n log |LL(Y )|); so the total number #(J)

of patterns we have chosen so far is

#(J) ≥
m−1∏
`=1

2h(Y )(j`+1−j`−(k+2N) = 2h(Y )
∑

(j`+1−j`)−h(Y )m(k+2N) = 2h(Y )n−C·h(Y )·m

where C = C(k,N, h(Y )) depends only on k,N, h(Y ), hence on G and Y . Recall also that
m = |J |. Thus we need to bound from below the sum∑

J⊆I

#(J) ≥
∑
J⊆I

2h(Y )n−C·|J|

(indeed, the sum bounds |Ln(X)| from below). We decompose the sum on the right according
to the density of J in I. In fact, it is enough to consider a single �xed density. Let ε > 0 be a
parameter; by the previous lemma, there are 2h(ε)n+o(n) such sets J . We use this to lower-bound
the sum above:

≥
∑
J∼εI

2h(Y )n−C··|J| ≥ 2h(ε)n+o(n)+h(Y )n−Cεn

≥ 2h(Y )n+(h(ε)−Cε)n+o(n)

It remains only to note that the function h(t) has in�nite right-derivative at zero, so for ε small
enough relative to C, we have δ = h(ε)−C(ε) > 0. Then for all large enough n, we have shown
that |Ln(X)| ≥ 2(h(Y )+δ/2)n, which proves the claim.

Let X = XG be a shift of �nite type and let a be a word in L(X) (a path in G) . Let

X
(a)
G ⊆ X denote the set of paths in G which do not contain a as a sub-path. Then XG is

clealry shift-invariant, and also closed, since if xn ∈ X(a)
G and xn → x then x ∈ X but every

�nite sub-sequence of x appears in xn for all large n, hence cannot be equal to a.

Assuming thatG is strongly irreducible, we know from the previous theorem that htop(X
(a)
G ) <

htop(XG). Certainly X
(a)
G can also be empty, but the next theorem shows,that if a is long enough
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then not only is it not empty, but its entropy approaches that of XG. First, a lemma. Observe

that a word b belongs to X
(a)
G if and only if for every M it can be extended forward and

backwards by M symbols so that the extended word does not contain a copy of a.

Lemma 9.12. Let XG, a be as above. Then there exists an M with the following property: If b
is any word that does not contain a copy of a, and if b can be extended M symbols forward and

backward to a word b′ also not containing a, then b ∈ L(X
(a)
G ).

Proof. Fix a. If M is large enough, then any word of length M contains at least two identical
sub-words of length |a|. Now for this m suppose that we can extend b as stated. So we get a
word of the form c1bc2 where c1, c2 have length M . We can �nd in each a sub-word of length
|a| that repeats twice, so c1 = d1dd2dd3 and c2 = e1ee2ee3. But clearly . . . dd2dd2dd2 . . . and
. . . ee2ee2ee2 . . . are in�ntie words not containing a, and so is . . . dd2dd2dd3be1ee2ee2e . . .. The

last sequence is therefore in X
(a)
G and so b ∈ L(X

(a)
G ).

Corollary 9.13. The number of paths of length n in G which do not contain a �xed sub-path a

is at most C · |Ln(X
(a)
G )|, where C depends only on G and a.

Proof. Let M be associated to a as in the previous lemma. If w = w1w2 . . . wn is a word not
containing a, then b = wM+1 . . . wn−M can be extended by M letters in each direction so as

not to contain a (just take w!) so by the lemma, b ∈ Ln−2M (X
(a)
G ). The map w → b is at most

|V |2M -to-1, so the claim follows with C = |V |2M .

Theorem 9.14. Let X = XG be a shift of �nite type with G strongly irreducible. Then there

exists a sequence δk → 0 such that if a ∈ V ` then htop(X(a)
G ) > htop(XG)− δk.

Proof. The analysis is similar to that in the previous proof. Fix a ∈ Lk(XG) and set Y = X
(a)
G ,

so a doesn't appear in Y . Let n be large. We count the words w ∈ Ln(G). For each such word
w let J ⊆ {1, . . . , n− k} denote the set of indices j such that wjwj+1 . . . wj+k−1 = a.

Let J0 ⊆ J be a minimal subset with the property that J ⊆ J0 + [0, k − 1] (such a set
exists because J ⊆ J + [0, k − 1]). We claim that |J0| < 2n/k. Indeed, if j ∈ J0, and if
j′, j′′ ∈ J0∩ [j, j+k−1], then we must have j′ = j′′, since otherwise we could delete the smaller
of the two from J0 and J0 + [0, k − 1] would remain unchanged. It follows that for each j ∈ J0

the interval [j, j+ k− 1] contains at most one other elements of J0 to in total, J0 has density at
most 2/k in J0 + [0, k − 1], hence in [1, n].

For each J0 ⊆ {1, . . . , n−k} of size ≤ 2n/k, let L(J) denote the set of w ∈ L(G) from which
it could arise by the procedure above. To estimate |L(J)|, let I1, . . . , Im denote the maximal
intervals in [1, n] \ (J0 + [0, k − 1]). For each w that gives rise to J0, the words w|Ii do not

contain a. By the previous lemma, the number of possible values for w|Ii is ≤ C · L|Ii|(X
(a)
G ),

so the number of possibilities for w|⋃ Ii , and hence for #{w which give rise to J0}, is

≤
m∏
i=1

CL|Ii|(X
(a)
G ) ≤ CmL∑

Ii(X
(a)
G ) ≤ C2n/kLn(X

(a)
G )
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Thus, using Lemma ??,

|Ln(XG)| ≤
∑

J0⊆{1,...,n−k},|J0|≤2n/k

C2n/kLn(X
(a)
G )

≤ C2n/k · 2h(2/k)n+o(n)Ln(X
(a)
G )

= 2h(X
(a)
G )n+O(n/k)+h(2/k)n+o(n)

On the other hand,
|LN (XG)| = 2h(XG)n+o(n)

combining the last two inequalities and taking logs gives the statement.

9.4 The Krieger embedding theorem

We say that a dynamical system (Y, T ) can be embedded in a system (X,S) if there is a
aubsystem Y ′ ⊆ X isomorphic to Y .

Let Pn(Y, T ) denote the set of points of period n in Y , i.e.

Pn(Y, T ) = {y ∈ Y : Tny = y}

Theorem 9.15 (Krieger embedding theorem). Let G be a strongly irreducible graph and X =
XG the associated shift of �nite type. Let (Y, T ) be a dynamical system satisfying

1. Y is zero-dimensional (i.e. there is a basis for the ctopology consisting of open and closed
sets).

2. (Y, T ) is expansive.

3. |Pn(Y, S)| ≤ |Pn(X,T )| for all n.

4. htop(Y ) < htop(X)

Then Y can be embedded in X.

The hypotheses of the theorem are almost necessesary. If Y embeds in X it is isomorphic
to a subsystem Y ′ ⊆ X. The isomorphism is an particular a homeomorphism, and Y ′ is totally
disconnected since X is, so (1) is necessary. Similarly, Y ′ is expansive since it is a symbolic
systme, so Y is, showing that (2) is necessary. Clearly Pn(Y ′) ⊆ Pn(X)| so |Pn(Y )| = |Pn(Y ′)| ≤
|Pn(X)|, so (3) is necessary. Finally, Y ′ ⊆ X implies htop(Y ) ≤ htop(X), and since entropy is an
isomorphism invariant, htop(Y ) = htop(Y

′), so (4) is nearly necesary. One cannot hope for the
theorem to hold with a weak inequality in (4), because if htop(Y

′) = htop(X) then, by Theorem
??, Y ′ = X. On the other hand there are many sytems which satisfy the �rst three properties
and have entropy htop(X), which are not isomorphic to X.

We will not prove the full theorem. Instead we prove a weaker version:

Theorem 9.16 (Krieger embedding theorem for minimal systems). Let G be a strongly irre-
ducible graph and X = XG the associated shift of �nite type. Let (Y, T ) be a dynamical system
satisfying
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1. Y is zero-dimensional (i.e. there is a basis for the ctopology consisting of open and closed
sets).

2. (Y, T ) is expansive.

3. (Y, T ) is an in�nite minimal system.

4. htop(Y ) < htop(X)

Then Y can be embedded in X.

A minimal system containing a periodic point is equal to the orbit of that point and hence
is �nite. Thus the assumption (3) in the last theorem implies that Pn(Y, T ) = ∅ for all n, and
so is a special case of (3) in the previous theorem.

We begin the proof with a reduction to the case that Y is a symbolic system. Indeed let
ε > 0 be a constant for the expansivity of Y , and let U = {U1, . . . , Uk} be a �nite partition of Y
into closed and open sets of diameter < ε., which exists since the topology is totaly disconnected
and the space is compact. Let τ : Y → {1, . . . , k}Z be the itinerary map: τ(y)i = j if and only if
T iy ∈ Uj . As we saw in ??, the fact that U is a partition implies that τ is well de�ned, the fact
that the Ui are open implies that it is continuous, and expansiveness implies that it is injective:
indeed, if x, y ∈ Y and x 6= y then by expansiveness there is some i with d(T ix, T iy) ≥ ε, hence
T ix, T iy cannot be in the same set Uj (since these sets have diameter < ε; so τ(x)i 6= τ(y)i,
and hence τ(x) 6= τ(y). Finally, τ also intertwines the action. So τ is an embedding of Y into
{1, . . . , k}Z, and so we can assume from the start that Y ⊆ {1, . . . , k}Z and T is the shift.

Thus, Y is an in�nite minimal symbolic system. For a set U and y ∈ Y consider the set
I(y) = {i : T iy ∈ U}. When U is open and closed, the map y → I(y) is continuous in the
following sense: For every N , if yn → y then I(y) ∩ [−N,N ] = I(yn) ∩ [−N,N ] for all large
enough n. To see this, note that we must verify for each i ∈ [−N,N ] that for all large enough
n, either y, yn are both in U or neither are. But U is open, so if y ∈ U then yn → y implies
yn ∈ U for all large n; and if y /∈ U then we have yn /∈ U for large n by applying the same logic
to the open set Y \ U .

Also note, that if U is open, then I(y) as de�ned above is unbounded above and below. This
is because of minimality; in fact, the gaps in I(y) are bounded, uniformly in y.

A �rst approximation for the construction of τ is obtained as follows.

(A) Let `0 be large enough that L`(Y ) < L`(X) for all ` ≥ `0; this exists since L`(Y ) =
2h(Y )`+o(`) and L`(X) = 2h(X)`+o(`), and h(Y ) < h(X).

(B) For each ` ≥ `0 choose an ijective function τ` : L`(Y )→ L`(X), which exists by choice of
`0.

(C) Choose a closed and open set U ⊆ Y such that the gaps in I(y) are at least `0 for all
y ∈ Y . To see that this can be done, �x any y ∈ Y . Since y is not periodic, the points
y, Ty, . . . , T `0y are all distinct. Thus by continuity of T , any small enough neighborhood
U of y has the property that U, Tu, . . . , T `0U are pairwise disjoint. Since Y is totally
disconnected we can choose U to be clopen. Now for any z, if i ∈ I(z) then T iz ∈ U .
Then i+ k ∈ I(z) if and only if T i+kz ∈ U , if and only if T k(T iz) ∈ U , so by choice of U
if k > 0 then k > `0.
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We now de�ne τ : Y → X as follows. Given y, �rst compute I(y) = {. . . i−1 < i0 < i1 < . . .}.
Now replace each word y|[ik,ik+1−1] with the word τik+!−ik(y|[ik,ik+1−1]). The result of all these
replacements is τ(y).

The map τ de�ned in this way is continuous. Indeed, for y and k, we will show that if y′ is
close enough to y then τ(y′)i = τ(y)i for all −k ≤ i ≤ k. Indeed �x y and let i− < −k and i+ > k
be elements of I(y). Then any y′ close enough to y will have I(y′) ∩ [i−, i+] = I(y) ∩ [i−, i+]
and y′|[−i−,i+] = y|[−i−,i+]. Thus, in the parsing of y and y′ into blocks according to I(y),I(y′)
respectively, thes blocks in coordinates [i−, i+] agree in both location and content. Thus the same
substitution is performed on both of them, which implies directly that τ(y)|[i−,i+] = τ(y′)|[i−,i+].

Also, τ intertwines the action: Indeed, it is clear that I(Ty) = I(y) − 1. Thus the parsing
of Ty into blocks is the shift of the parsing of y. Also the corresponding content of the blocks
is the same because Ty is y shifted by one. So the substitution of Ty (i.e., τ(y)) is the shift of
the substitution of y.

What is not ensured in this construction, is that τ is injective. What is true is that, if we
know τ(y) and also know I(y), then we can recover y, because I(y) tells us the parsing into
blocks, and on eahc block we applied τ` for some `, and these maps were chosen to be injective.
However, it is not clear that I(y) is in fact encoded in τ(y).

Also, the image of τ need not be contained in X. Each τ(y) is a concetenation of blocks
from L(X) but the concatenation need not itself form a legal path in G.

The last problem is easier to �x. First,

(D) Let N = NG be as in the de�nition of strong irreducibility,

Now in the construction above, choose `0 large enough that L`(Y ) < L`−N (X); this can be
done for the same reson as before. Now when de�ning τ , each block y|[ik,ik+1−1] is replaced
by is image under τik+1−ik , but the latter is shorter by N than the original block, so τ(y) now
consists of blocks from X separated by undetermined gaps of length N . We �ll in each gap to
form a legal path in G; we do this deterministically, i.e. for each u, v ∈ V we choose a single

path u
N−→ v, and use this to �ll in each gap with the endpoints u, v. It is not hard to check

that τ is still equivariant and continuous and its range is now in X.
To �x non-injectivity, we need to somehow �mark� I(y) in the output sequence τ(y). To do

this we introduce the following de�nition.

De�nition 9.17. A Marker for XG is a word a ∈ L(XG) such that if a appears in a word b at
indices i, j, then |i− j| ≥ |a|. That is, it cannot overlap itself non-trivially.

Proposition 9.18. Let G be strongy irreducible. Then there exist arbitrarily long markers for
XG.

Proof. Let u0u1 . . . uk−1u0 be a simple cycle in G, and of minimal length among all cycles in G.
As in the proof of Lemma ??, there must be some 0 ≤ i < k such that ui has two outgoing edges
in G, ending at ui+1 and another vertex v. Withoug loss of generality we can assume i = k − 1
has this property (otherwise, permute the vertices cyclically). Also, we must have v 6= uj for all
j, since otherwise we could form the shorter cycle ujuj+1 . . . uk−1uj , contradicting minimality.

Write a = u0u1 . . . uk−1. For each n we claim that anv is a marker. Indeed, suppose that
anv appears in b at indices i < j. If j < nk + 1, then the last symbol in anv appears as part
of the word anv starting at j, but not the last symbol, and this is impossible, since v does not
appear in a. Thus anv is a marker and its length is nk+ 1, which can be made arbitrarily large
by choce of n.
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We now return to the proof of Krieger's theorem for minimal systems. We introduce the
following parameter:

(E) Let δ = 1
2 (htop(XG)− htop(Y )).

(F) LetM be large enough that for every m ≥M−2N and a ∈ Lm(XG) we have htop(X
(a)
G ) >

htop(Y ) + δ. Such M exists by Theorem ??.

(G) Choose a marker a for XG of length |a| ≥ M . Write m = |a|. Also, let ã denote was
remains of a after deleting the �rst N symbols and the last N symbols.

Now we modify step (A), replacing it with:

(A') Let `0 be large enough that L`(Y ) < L`−m−2N (X
(ã
G )) for all ` ≥ `0; this exists since

L`(Y ) = 2h(Y )`+o(`) and L`(X
(ã)
G ) = 2h(X

(ã)
G )`+o(`), and h(X

(ã)
G ) > H(Y ) + δ.

We proceed now to choose τ` as in (B) and U as in (C), using the `0 de�ned in (A').
Now de�ne τ : Y → XG as follows. Given y ∈ Y , �rst �nd I(y) = {. . . < i−1 < i0 < i1 <

i2 < . . .}, and in τ(y) put a copy of the marker a starting at every ik ∈ I(y). Then parse y into
blocks wi = y|[ik,ik+1−1], and put the block τ|wi|(wi) at ik +m+N . Note that by construction
this block ends at index ik+1 −N .

The sequence τ(y) is now de�ned on the intervals [ik, ik +m− 1] and [ik +m+N, ik+1−N ]
and on these intervals we have valid paths in G. The �nal step is to �ll inthe gaps, each of
length ≥ N , to form legitimate paths. We do this in a manner depending only on the vertices
at the ends of the gaps.

As de�ned, it is clear that the image of τ is in XG and that it is continuous and intertwines
the action � the argument for these is the same as in the preliminary version of the construction.

It remains to show that τ is injective. For this we will show that I(y) can be recovered from
τ(y); once this is done, we can recover τ|wi|(wi) and, since τ` are injective, recover wi, which
make up y.

We claim that we obtain I(y) from τ(y) as the set of locations i at which a copy of a appears
in τ(y). By construction, this set certainly contains I(y), so we need to show that there are no
other copies of a in τ(y) besides these. Indeed, such a copy cannot intersect the copies coming
from I(y), because a is a marker. Hence any other copy of a is contained in the gaps between
the a's coming from I(y). The sequence in such a gap consists of N symbols, then a word from

L(X
(ã)
G ), and another N symbols. Thus if a occurs in a gap, then, except for at most N symbols

at its start and end, it lies in a word from X
(ã)
G , and, in particular, ã (which is a without its

�rst and last N symbols) lies entirely in word that comes from L(X
(ã)
G ); which is impossible.
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10 Symbolic coding of toral automorphisms

10.1 Symbolic representation of dynamical systems

Let (X,T ) be an invertible dynamical system and A = {A1, . . . , Ar} a cover of X. To avoid
trivialities we assume that Ai 6= ∅ .

A point ω ∈ {1, . . . , r}Z is called the itinerary of a point x ∈ X if

Tnx ∈ Aωn

for all n ∈ Z, that is, (ωn) records where (in which set(s) Ai) T
nx is for each n. Similarly one

de�nes theforward itinerary (ωn) ∈ {1, . . . , r}N which is de�ned also when T is not invertible.
We focus on the invertible case, the non-invertible one is similar.

The idea of taking itineraries is that we observe the orbit at ��nite resolution�: at each time
we take a �measurament� of the point Tn which gives us only a �nite amount of information
about it, namely, the identity of a set Ai to which it belongs. One can hope � and sometimes
it is true � that this �nite information taken along the entire history of the orbit may allow us
to reconstruct the point x completely, or with high accuracy; and that the association x ↔ ω
between points and itineraries will give us a �good� representation of the dynamics.

For there to be any hope of this we need (a) to better understand the association of itineraries
to points, and (b) for this to be useful we need the set of itineraries to be simple enough to
analyze (otherwise we have not gained any insight). We start with (a).

Remarks and basic properties � Every x ∈ X has some itinerary (because Tnx belongs
to some Ai, since A covers X).

� A sequence ω−N , . . . , ωN ∈ {1, . . . , r}2N+1 can be extended to an itinerary of x if and
only if

x ∈
N⋂

n=−N
T−nAωn

(and similalry for forward itineraries taking the intersection from 0 to N).

� If ω is an itinerary of x then Sω (the shift of ω) is an itinerary of Tx.

Let
ΩA = {all itineraries of points in X} ⊆ {1, . . . , r}Z

More properties � If A1, . . . , Ar are closed then ΩA is closed. Indeed, let ω1, ω2, . . . be
itineraries and ωi → ω. Let x1, x2, . . . ∈ X such that ωi is an itinerary of ωi and pass
to a subsequence so xi → x. Then Tnxi ∈ Aωin for all n, i; since ωin = ωn for all large
enough i, and Ai is closed, it follows that T

nx ∈ Aωn , hence ω is an itinerary of x,
and ΩA is closed to taking limits.

� Each x ∈ X has a unique itinerary, if and only if A is a partition. This is clear, since
if x ∈ Ai and x ∈ Aj for some i, j then x has itineraries starting with both i and j.

Note that if A is a partition then each Ai = X \
⋃
j 6=iAj is open (since it is the

complement of a �nite union of closed sets). Thus X admits sets non-trivial sets
which are both open and closed. In other words, it is disconnected. This is a non-
trivial topological assumption (for example no such partition exists of a ball in a
normed space, of tori, etc.).
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� Suppose that A is a partition, so each x has a unique itinerary. Then we have a well
de�ned function i = iA : X → ΩA taking a point to its itinerary. Then this map is
continuous. Indeed, since cylinder sets generate the topology in ΩA, we need to show
that for any a−N , . . . , aN ∈ {1, . . . , r}2N+1, and writing C = {ω : ωn = an for |n| ≤
N}, the set i−1(C) is open. But this set is just

⋂N
n=−N T

−nAωn , and since T is a
continuous bijection and the Ai is open, this is a �nite intersection of open sets, hence
open, as desired.

In conclusion, when A is a partition into closed (and open) sets, we obtain a factor
map from X to ΩA. The factor map will be an isomorphism when it is injective; a
condition for this is given below.

The cover A is said to be generating if no ω is the itinerary of more than one point. A more
useful condition is the following (in fact the two are equivalent, we leave the equivalence as an
exercise):

∀ε > 0 ∃N ∀ω−N . . . ωN ∈ {1, . . . , r}2N+1 diam

N⋂
n=−N

T−nAωn < ε (5)

� If (5) holds, then every ω ∈ ΩA is the itinerary of a unique x ∈ X. This de�nes a map
π : ΩA → X. The maps is, furthermore, continuous. Indeed let ε > 0. Let N correspond
to ε in (5). Let δ = 2−N+1. Then d(ω, ω′) < δ implies ω−N , . . . , ωN = ω′−N , . . . , ω

′
N . Since

π(ω) and π(ω′) are both in
⋂N
n=−N T

−nAωn , and since this is a set of diameter < ε but
our choice of N , we have d(π(ω), π(ω′)) < ε, which gives continuity.

In conclusion, assuming (5), we obtain a factor map π : ΩA → X. The map will generally
not be an isomorphism � for that to happen we would need also that A is a partition into
close and open sets, as above.

Example

Let X = R/Z and Tx = 2x mod 1 (you can replace 2 by any larger integer).
Let Ai denote the cover of R/Z by half-open intervals A0 = [0, 1/2] and A1 = [1/2, 1].
Since T is non-invertible, we will work with forward itineraries. Let ΩA denote the set of

these.

Claim. For each ω0 . . . ωN ∈ {0, 1}N the set
⋂N
n=0 T

−nAωn is a closed interval of length 2−(N+1).

Proof. By induction. It is true for N = 0. Assume it it true for N − 1. Then

N⋂
n=0

T−nAωn = Aω0 ∩
N⋂
n=1

T−nAωn

= Aω0
∩ T−1

(
N−1⋂
n=0

T−nAωn+1

)

By the induction hypothesis,
⋂N−1
n=0 T

−nAωn+1
is an interval of length 2−N , and its inverse

image under T is the union of two intervals of half that length, one contained in A0 and one in
A1. Thus, the intersection of the preimage with Aω0 is a single interval of length 2−(N+1), as
claimed.
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This proves (5). It also shows that ΩA = {0, 1}N, since in particular for every ω0 . . . ωN
there exist points with itineraries starting with the given sequence. We obtain a factor map
π : {0, 1}N → R/Z. It is easy to see that this is just the binary coding map!

10.2 Hyperbolic toral automorphisms

We now describe (by example) a class of systems which allow a concrete representation via the
factor map π : ΩA → X described above. In this class, the symbolic system ΩA (or, rather
a certain subset of it) is a shift of �nite type, i.e. the set of paths through a directed graph;
and thus easy to analyze; and π is injective on a large part of the space. The di�culty is in
constructing the cover A which gives this representation. The example we give is the simplest
possible beyond the example at the end of the previous section.

Recall that if A is an integer 2 × 2 matrix then it induces a map of T2 = (R/Z)2 which
intertwines the projection x 7→ x mod 1. If detA = ±1 then by Cramérs rule, A−1 is also an
integer matrix. Then A−1 induces a map on T2 as well and since AA−1 = A−1A = id in R2,
the same relation holds for the induced maps, i.e. they are invertible.

A 2 × 2 matrix is said to be hyperbolic if none of its eigenvalues has absolute value 1. In
the 2 × 2 case we are considering this means that it has two distinct real eigenvalues λ+, λ−,
and since their product is ±1 = detA, and since the are not of modulus one, we must havge
λ+ > 1 > λ− > 0 and |λ−| = 1/ |λ+|.

We consider for simplicity the example

A =

(
2 1
1 1

)
whose eigenvalues are λ± = 1

2 (3 ±
√

5) with corresponding eigenvectors v± = ( 1
2 (1 ±

√
5), 1).

Since A is symmetric these are orthogonal.
We say that a set R ⊆ R2 is an A-rectangle if in the basis v+, v− it is a product of closed

intervals, i.e. has the form {sv+ + tv− : (s, t) ∈ [a, b] × [c, d]}. We shall speak of the v− and
v+ sides of R with the obviousmeaning. Note that such a set is indeed a rectangle because
v± are orthogonal; for general hyperbolic matrices the eigenvectors will not be orthogonal and
A-rectangles we would get parallelograms instead.

We say that a subset R ⊆ T2 is an A-rectangle if it is the image of a rectangle in R2 under
the mod-1 projection.

Properties of rectangles. If R is an A-rectangle with sides of length a± in directions v±
respectively, then TR is an A-rectangle with sides of length λ+a+ and λ−a−, respectively; and
T−1R is an A-rectangle with sides of length λ−1

+ a+ = λ−a+ and λ−1
− a− = λ+a−. the proof is

from the de�nition of the eigendirections and eigenvalues.
Also, a �nite intersections of A-rectangles is an A-rectangle.
Fact. There exists a cover B′ = {B′0, B′1} of T2 into A-rectangles which intersect only at

their boundaries, and such that TB′i is the union of �nitely many A-rectangles, each contained
in, and sharing the v−-sides of, one of the B

′
i. The construction of B′ can be found in chapter

5.12 of Brin and Stuck.
Now, one can verify that TB′1 ∩ B′1 consists of two such rectangles B1, B3, and TB

′
1 ∩ B′2

consists of one rectangle B5; and TB
′
2 ∩B′1 consists of one rectangle B2 and TB′2 ∩B′1 consists

of one rectangle, B4. (the indexing is to be consistent with the �gure in Brin and Stuck).
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Figure 1: The cover {B′1, B′2} (notation in the �gure is di�erent ours). Taken from Brin & Stuck.
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Figure 2: The cover {B1, . . . , B5} (notation in the �gure is di�erent from ours). Taken from
Brin & Stuck.
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Let B = {B1, . . . , B5} denote the cover thus obtained. Further, let G = (V,E) denote the
graph V = {1, 2, 3, 4, 5} (the index set of the Bi), and (i, j) ∈ E if TBi ∩ Bj has non-empty
interior. That is, intersect not only at the boundaries.

The proof of the following should be compared with the example in the previous section.

Claim. For any ω0 . . . ωN ∈ {1, . . . , 5}N,
⋂N
n=0 T

nBωn is an A-rectangle whose side length in the

V+ direction is ≤ C and in the v− direction is ≤ CλN+1
− for some constant C > 0. Furthermore,

if (ωn) form a path in G then the intersection is not empty.

Proof. By induction. For N = 0 it is trivial. Assume it for N − 1 and let ω0, . . . , ωN be given.
Then

N⋂
n=0

TnBωn = Bω0
∩

N⋂
n=1

TnBωn

= Bω0
∩ T 1

(
N−1⋂
n=0

TnBωn+1

)

The set B in parentheses is, by the induction hypothesis, an A-rectangle of proportions a × b
with a ≤ C and b ≤ C ·λN− and is contained in Bj for some j. So T 1B has proportions λ−a×λ+b
and is contained in TBj . The intersection of TBj with Bω0

is contained in the intersection of
B′u and TB′v where B′u, B

′
v are the rectangles containing Bω0

and Bj , and this is one of the

Bw's; thus
⋂N
n=0 T

nBωn = Bω0 ∩ TB has the proportioned claimed.
For the last claim we do the same induction, noting that since B is a rectangle running

the entire v+-side of Bω1
, the interior of TB runs the entire length of the v+-direction of the

interiors of its intersection with Bi for all i such that iω1 ∈ E, and in particular intersects each
of them non-trivially. This proves the claim.

Corollary 10.1. The cover B satis�es (5).

Proof. Use
⋂N
n=−N T

−nBωn = T−N (
⋂2N+1
n=0 TnBωn). By the previous claim, the set in parenthe-

ses is an A-rectangle of dimension O(1)×O(λ2N+1
− ), so T−N of it has dimensions O(λN− )×O(λN− ).

Since λ− < 1 this means that the diameter of
⋂N
n=−N T

−nBωn decays exponentially indepen-
dently of ω, proving the claim.

It follows that we have a factor map π : (ΩB, S) → (T2, T ). Let Y be the space of paths
through G. The claim above shows that Y ⊆ ΩB.

Claim 10.2. π(Y ) = T2, so π is a factor map Y → T2 and |π−1(x)| = 1 for all x ∈ T2 outside
of a countable union of line segments (in particular for a.e. x and for x in a dense Gδ set).

Proof. The fact that π is a factor map follows from the previous discussion.
For the last statement note that x belongs to two of the rectangles B1, . . . , B5 only when it

belongs to their boundaries. Therefore π is non-injective only on the union of the A-images of
these line segments, which form a zero measure et and a set of �rst category.

We can be a little more precise about when π is non-injective. If π−1(x) contains more than
one point then Tnx ∈ ∂Bi for some n ∈ Z and i ∈ {1, . . . , 5}. If the boundary component is in
the v+ direction then, since the boundaries in this direction are mapped by T into themselves,
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we see that for all future times, Tn+kx is contained in such a boundary component also; so
every itinerary of x is, fom some point on, not euqal to 2. In the same way if the boundary
component is in the v− direction then at all previous times he same holds, so any itinerary
omits the symbols 2, 3 from some point on. Thus, for example, any point that is forward and
backward transitive in T2 has a unique pre-image.

10.3 Remarks

The existence of a shift of �nite type symbolic extension for hyperbolic toral automorphisms
extends to higher dimensions. There, a matrix is hyperbolic if all its eigenvalues have modulus
6= 1. However, the cover obtained is not as nice as the one we described. In dimension ≥ 3,
the sets in the cover are not rectangles or even parallelograms. Rather, they have a �fractal�
boundary, and in particular their boundaries are not piecewise smooth.

More generally, there is a broad class of dynamical systems, the so-called hyperbolic systems,
which admit similar covers. These are, essentially, systems on manifolds such that the di�erential
at typical points consist of hyperbolic matrices.

There are still quesitons in this area. It is not clear for non-hyperbolic system when such
symbolic covers exist, and this is still an active area of research.
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11 Multiple recurrence and Van der Warden's theorem

Van der Warden's theorem is the following combinatorial statement of Ramsey type:

Theorem 11.1 (Van der Warden). Let N = A1 ∪ . . . ∪ Ar be a �nite partition of the natural
numbers. Then one of the sets Ai contains arbitrarily long arithmetic progressions, i.e., for
every d there are a, b such that a, a+ b, a+ 2b, . . . , a+ db ∈ Ai.

There is a dynamical proof of this theorem, due to Furstenberg and Weiss, which uses the
following generalization of the recurrence phenomenon for single maps.

Theorem 11.2. Let X be a compact metric space and T1, . . . , Td : X → X continuous com-
muting maps, i.e. TiTj = TjTi. Then there exists an x ∈ X which is jointly recurrent under the
maps, i.e. not only is it recurrent for all of them, but it is recurrent along a common sequence
of times: there exists a sequence nk → ∞ such that Tnk1 x → x, Tnk2 → x, . . ., Tnkd x → x as
k →∞.

Proof that the multiple recurrence theorem implies Vann der Waerden. Let N = A1 ∪ . . . ∪ Ar
be a partition of the integers.

Let x ∈ {1, . . . , r}N denote the point

xn = i if n ∈ Ai

Let X ⊆ {1, . . . , r}N denote the orbit closure of x.
Fix d ≥ 1 and set Ti = Si (where S is the shift map). Then T1, . . . , Td are commuting,

continuous maps of X.
By the multiple recurrence theorem there exists y ∈ X and n ∈ N such that d(Tni y, y) < 1/2

for i = 1, . . . , d. Here d(·, ·) denotes the metric on the shift space and it is de�ned in such a
way that when the distance between two points is less than 1/2, they must agree in their �rst
cordinate.

Since Tni = Sin, the condition d(Tni y, y) < 1/2 implies that y1 = yin. Thus all the symbols
yn, y2n, . . . , ydn agree and are equal to y1.

Since y ∈ OS(x) there is a sequence (nk) such that Snkx → y. In particular for large
enough k, the points Snkx and y agree on their �rst dn symbols. It follows, that xnk+n = yn,
xnk+2n = y2n, ... xnk+dn = ydn. In particular,

xnk+n = . . . = xnk+dn = y1

which means that the set Ay1 contains the arithmetic progression nk + n, nk + 2n, . . . , nk + dn.
We have thus shown that for every d, one of the sets Ai contains an arithmetic progression of

length d. Since there are �nitely many sets Ai, one of them must contain arithmetic progressions
of arbitrarily large length, and thus of all lengths.

The proof of the multiple recurrence theorem presented below is taken from Chapter 3 (and
end of Chapter 2) of Furstenberg's book �Recurrence in ergodic theory and combinatorial number
theory�.
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11.1 Commuting maps : a quick introduction

Commuting continuous onto maps T1, . . . , Td of X can be viewd as the action of an abelian group
or semigroup G on X, and all the notions we have developed apply. In particular the orbit of a
point is the set of images under all elements of the semigroup, the action is minimal if there are
no closed non-empty proper subsets which are invariant under the action (equivalently under
all the maps T1, . . . , Td), and minimality is the same as every orbit being dense. n a minimal
action, if U 6= ∅ is an open set then

⋃
g−1U covers X (and so there is a �nite sub-cover).

11.2 Recurrent sets and homogeneous sets

De�nition 11.3. Let (X,T ) be a dynamical system. A subset A ⊆ X is called recurrent for
T , if for every x ∈ A and every ε > 0 there exists y ∈ A and n ∈ N such that d(Tny, x) < ε.

Note that we did not require A to be T -invariant!
For example, when T is onto, X is recurrent.

Lemma 11.4. If A ⊆ X is recurrent then for every ε > 0 there exists z ∈ A and n ∈ N with
d(Tnz, z) < ε.

Proof. Fix ε > 0. Choose any z0 ∈ A and ε0 = ε/2 and de�ne a sequence recursively as follows:
Given xn, εn, we use the fact that A is recurrent to �nd xn+1 ∈ A and kn+1 ∈ N such that

T kn+1xn+1 ∈ Bεn(Xn), and use continuity of T to �nd εn+1 < ε/2 so that T kn+1(Bεn+1(xn+1)) ⊆
Bεn(xn).

By compactness, there will be two points in the sequence, say xi and xj with < j, such that
d(xi, xj) < ε/2. Now one has T kjxj ∈ Bεj−1

(xj−1), hence T kj−1(T kjxj) ∈ Bεj−2
(xj−2), and so

on, until we �nd that, writing k = kj + kj−1 + . . .+ ki+1,

T kxj = T ki+1T ki+1 . . . T kjxj ∈ Bεi(xi)

Therefore,
d(T kxj , xj) ≤ d(T kxj , xi) + d(xi, xj) < ε/2 + ε/2 = ε

and xj is the desired point.

De�nition 11.5. Let (X,T ) be a dynamical system. A subset A ⊆ X is called homogeneous
if there exists a group G of homeomorphism of X commuting with T (i.e. gT = Tg for g ∈ G)
and such that A is a minimal subset for G (i.e. A is closed and G-invariant and contains no
smaller G-subsystem).

Note again that A was not required to be T -invariant!
For example, if G is a compact group and ϕ : X → G is a continuous function, we can form

the skew product X ×G with the map T̃ (x, g) = (Tx, ϕ(g)x). The group G acts on X ×G via
the maps Rg(x, h) = (x, hg−1), and these maps commute with T and act minimally on each set
{x} ×G. So these sets are homogeneous in the sense above.

Lemma 11.6. If A ⊆ X is recurrent and homogeneous then it contains a recurrent point for
T .
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Proof. De�ne F : A→ [0,∞) by

F (x) = inf{d(Tnx, x} : n ∈ N}

Then F is the in�mum of continuous functions, so it is upper semi-continuous (if yn → y then
lim supF (yn) ≤ F (y)).

Let x0 ∈ A be a point of continuity of F (every upper semi-continuous function is continuous
on a dense Gδ set of points).

We claim that F (x0) = 0, which implies that x0 is recurrent.
For suppose not. Let ε > 0 and let V be an open neighborhood of x0 such that f |V > ε.
Let G be the group from the de�nition of homogeneity and choose a �nite set Γ ⊆ G such

that
⋃
g∈Γ gV ⊇ A (we can do this because G acts minimally on A).

Let δ > 0 be such that if d(x, y) < δ then d(gx, gy) < ε for all g ∈ Γ.
By the previous lemma we can �nd z ∈ A and n ∈ N with d(Tnz, z) < δ.
Also there exists g ∈ Γ with gz ∈ V .
Therefore,

d(Tngz, gz) = d(g(Tnz), gz) because g, T commute

< ε because d(Tnz, z) < δ and by choice of δ

Hence F (gz) < ε contradicting gz ∈ V and the de�nition of ε, V .

We next show that we require les than recurrene of A to draw the same conclusion.

Proposition 11.7. Let A ⊆ X be homogeneous and suppose that

For every ε > 0 there exist x, y ∈ A and n ∈ N with d(Tnx, y) < ε

Then A contains a recurrent point for T .

Proof. We want to show that the stated condition implies that A is recurrent; then the conclusion
follows from the previous lemma.

Fix any z ∈ A and ε > 0, and let G be as in the de�nition of homogeneity.
We can choose a �nite set Γ ⊆ G such that for any x, y ∈ A there exists g ∈ Γ with

d(gx, y) < ε/2. Indeed, let B1, . . . , BN be a cover of A by balls of diameter < ε/2. By

minimality, for each i there are elements gi,1, . . . , gi,n(i) such that
⋃n(i)
j=1 g

−1
i,j Bi ⊇ A. Now

given x, y ∈ A, we have y ∈ Bi for some i, and then x ∈ g−1
i,j Bi, so gi,jx ∈ Bi, and hence

d(gi,jx, y) < diamBi < ε/2. So Γ = {gi,j} satis�es our requirement.
Let δ > 0 be such that if d(x, y) < δ then d(gx, gy) < ε/2 for all g ∈ Γ.
Now use the hypothesis of the proposition, to �nd x, y ∈ A and n ∈ N with d(Tny, x) < δ.
Let g ∈ Γ be such that d(gx, z) < ε/2. Then

d(Tngy, gx) = d(gTny, gx) because gT = Tg

< ε/2 because d(Tny, x) < δ and de�nition of δ

Therefore
d(Tngy, z) ≤ d(Tngy, gx) + d(gx, z) < ε/2 + ε/2 = ε

so gy is the desired point verifyling recurrence of A.
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11.3 Proof of the multiple recurrence theorem

We want to show that ifT1, . . . , TN are commuting continuous maps of X then there is a jointly
recurent point, that is, a point x ∈ X and a seqeuence nk → ∞ such that Tnki x → x for
i = 1, . . . , N .

By passing to a subsystem we may assume that the action of T1, . . . , TN is minimal.
We also may assume they are invertible, for if not, one can pass to an extension in which

the maps are invertible (as in the natural extension construction for a single map).
We prove the claim by induction on N .
For N = 1, it is just the Birkho� recurrence theorem.
Suppose we have proved it for N − 1. Let

∆ = {(x, . . . , x) ∈ XN : x ∈ X}

denote the diagonal and
T̃ = T1 × T2 × . . .× TN

This is a map of XN . We wish to �nd a point (x, . . . , x) ∈ ∆ that is recurrent for T̃ , for then x
is jointly recurrent for the Ti.

Let
T̃i = Ti × . . .× Ti

Then T̃1, . . . , T̃N comute with T̃ and act iminimally on ∆. This shows that ∆ is homogeneous.
Thus, by the proposition from the previous section, it is enough if we show that ∆ satis�es:

∀ε > 0 ∃x̃, ỹ ∈ ∆ ∃n ∈ N d(T̃ny, x) < ε

De�ne the maps
Ri = TiT

−1
N

These are continuous commuting maps of X, so by the induction hypothesis, there is a point
x ∈ X and nk →∞ such that Rnki x→ x.

De�ne
x̃ = (x, x, . . . , x) ∈ ∆

Also, let
ỹk = (T−nkN x, . . . , T−nkN x) ∈ ∆

and observe that

T̃nk ỹk = (Tnk1 T−nkN x, . . . , TnkN−1T
−nk
N x, x)

= (Rnk1 x, . . . , RnkN−1x, x)

→ x̃

so for large enough k the choice ỹ = ỹk and n = nk satisfy d(T̃nỹ, x̃) < ε, which is what we
wanted.

90



12 Furstenberg's ×2,×3 theorem
Furstenberg's ×2,×3 theorem is a result on the �rigidity� of certain commuting transformations,
and although the proof we give is simple it is an extremely important result which has lead to
many generalizations, questions and applications.

For an integer a ≥ 2 let Ta : T → T denote the times-a map x 7→ ax mod 1. As we know,
the system (T, Ta) s a factor of {0, 1, . . . , a − 1}N by a map that is 1-1 outside a countable set
of rational points. By the Krieger embedding theorem, this system is universal for expansive
zero-dimensional subshifts which obey mild conditions on their entropy and periodic points.

The maps Ta, Tb commute, and in fact, TaTb = Tab. However not every pair a, b gives a
genuinely 2-dimensional action. For example the maps T2, T4 together just give an action of N
(the powers of T2), and similarly T4, T8 generate a semigroup which is isomorphic to N×Z/2Z,
which is not very di�erent from Z. In particular any T2-invariant set is invariant under T4, T8,
hence we again �nd that there are many subsystems of the joint T4, T8 action.

De�nition 12.1. Let a, b ≥ 2 be integers. We write a ∼ b if a, b are powers of some integer,
or equivalently if log a/ log b ∈ Q. In this case we say a, b are multiplicatively dependent. When
they are not we call them multiplicatively independent and write a 6∼ b.

By our discussion, when a ∼ b the joint action of Ta, Tb admits many subsystems. Surpris-
ingly when a 6∼ b they do not!

Theorem 12.2 (Furstenberg's ×− 2,×− 3 Theorem). Let a 6∼ b be integers greater than one.
Then there is no in�nite, closed, Ta, Tb-invariant proper subset of T.

The name �×2,×3 theorem� derives from the fact that 2 6∼ 3 are prototypical examples.
The theroem classi�es the in�nite invariant subsystems, but in fact, it is also easy to classify

the �nite ones. Any irrational point clearly has an in�nite orbit under Ta (since if a
nx = x mod 1

anx = x + k for some integer k and then x is rational). So the only �nite invariant sets must
consist of rationals, and in fact, the orbit of every rational point is �nite under the joint action
of Ta, Tb (since both maps preserve the denominator).

Thus, we can reformulate the theorem as follows:

The only subsystems of the joint Ta,Tb action are T itself, and certain �nite sets of
rational numbers.

Equivalently: if x ∈ [0, 1] is irrational, then {anbkx mod 1}k,n∈N is dense in [0, 1].

We turn to the proof, which will require several steps.
Fix a 6∼ b as in the theorem, set

S = {akbn}n∈N
and order S as

S = {s1 < s2 < s3 < . . .}

The main analytic input for the proof is provided by the next lemma, which is the only place
that the assumption a 6∼ b will be used.

Lemma 12.3. sn+1/sn → 1.
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Proof. Let ε > 0. Observe that α = log 2/ log 3 is irrational, so there exist p, q ∈ N such that
p log 2−q log 3 ∈ (0, ε); indeed, this is equivalent to pα ∈ (q, q+ε) and we have seen that (pα)∞p=1

is dense modulo 1.
Similarly, we can �nd p′, q′ such that −p′ log 2 + q′ log 3 ∈ (0, ε).
Write nt = 2k(t)3`(t), and note that k(t) + `(t)→∞ as t→∞. Consider any t large enough

that k(t) + `(t) > p′ + q. Then either k(t) > p′ or `(t) > q. Suppose for instance the �rst of
these holds. Let k = k(t)− p′ and ` = `(t) + q′. We then have

2k3` = 2k(t)3`(t)2−p
′
3q
′

= 2k(t)3`(t) exp(−p′ log 2 + q log 3)

By choice of p′q′ this is greater than 2k3` but less than 2k(t)3`(t) · eε. Thus 2k3` ≥ nk+1 and we
conclude that

nt ≤ nt+1 ≤ eε · nt
If we happened to be in the case `(t) > q, we would de�ne k = k+ p and ` = `− q and proceed
in the same way.

In both cases, we found that 1 ≤ nt+1/nt ≤ eε. Since ε was arbitrary, this proces the
claim.

Lemma 12.4. Suppose that X ⊆ T is closed and Ta, Tb invariant. If X contains a non-isolated
rational point, then X = T.

Proof. First suppose that 0 ∈ X is not isolated. Then we can �nd a monotone sequence in X
converging to 0. We may assume that the sequence converges from the right; if it converges from
the left, replace X by −X, noting that it is still Ta, Tb invariant, and now 0 can be approximated
from the right.

Thus let xn ∈ [0, 1] ∼= T with xn ↘ 0.
Fix y ∈ T.
For each n, let k(n) be the largest integer with sk(n)xn < y, so

sk(n)xn < y < sk(n)+1xn

Then

|y − sk(n)xn| < sk(n)+1xn − sk(n)xn

= (
sk(n)+1

sk(n)
− 1)sk(n)xn

≤
sk(n)+1

sk(n)
− 1

→ 0 as n→∞

where we used sk(n)xn < y ≤ 1.

We conclude that y ∈ {sxn : s ∈ S , n ∈ N} ⊆ X, and since y was arbitrary, X = T.
Now suppse r ∈ X is a rational accumulation point. Then so is sr for all s ∈ S. since

the orbit of r under Ta, Tb is �nite, we can �nd s ∈ S and n0, k0 such that r′ = sr is �xed by
multiplication by a′ = an0 and b′ = bk0 . Note that r′ ∈ sX = X.
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Now let X ′ = X − r′. Since r′ is �xed by a′, b′ the set X ′ is Ta′ , Tb′ invariant. Also, a
′ 6∼ b′

since log a′/ log b′ = (n0/k0) log a/ log b. Finally, 0 is an accumulation point in X ′. So by the
�rst part of the proof, X ′ = T and it follows that also X = T.

Observe that if X ⊆ T is Ta, Tb-invariant and in�nite it contains a not necessarily rational
accumulatoin point x0. Furthermore,

X −X = {x1 − x2 : x1, x2 ∈ X}

is also an in�nite closed Ta, Tb-invariant that contains 0 = x0 − x0 and 0 is an accumulation
point, since if xn → x0 monotonically in X then 0 6= xn−xn−1 → 0 in X−X. We then conclude
that X −X = T.

Proof of Furstenberg's theorem. Let X be an in�nite closed invariant set.
Fix ε > 0; we shall show that X is ε-dense, and since ε is arbitrary and X is closed, this will

mean X = T.
Fix a prime number p > 1/ε.
Replace a by ap−1 and b by bp−1. These are still multiplicatively independent, X is still

jointly invariant, and now Ta(1/p) = Tb(1/p) = 1/p by Fermat's little theorem.
Let X1 denote what is left after removing all isolated points from X. This set is closed and

stil Ta, Tb-invariant (since the image of a non-isolated point under Ta is non-isolated), so if X1

is �nite, it consitsts only of rational points. But then X would contain non-isolated rational
points and by the previous lemma we would be done. So we can assume X1 is in�nite.

By the previous observation, X1 −X1 = T and in particular, 1/p ∈ X1 −X1.
Let X2 = X1 ∩ (X1 + 1/p) and note that 1/p ∈ X1 −X1 implies X2 6= ∅.
Since 1/p is �xed by Ta, Tb we check that X2 is jointly Ta, Tb-invariant.
If X2 is �nite, then it consists of rational points, and so X1 contains a rational point (since

X2 ⊆ X1). But all points in X1 are non-isolated, so we conclude by the previous lemms that
X1 = T and hence X = T.

So we may assume that X2 is in�nite.
We now repeat the argument. Remove all isolated points from X2 and conclude that either

we are left with a �nite set of rationals, in which case X = X2 = T, or else, writing again X2

for the set after the removel, 1/p ∈ X2 −X2, and can de�ne X3 = X2 ∩ (X2 + 1/p).
We proceed in this way to de�ne also X4 ⊇ X5 ⊇ . . . ⊇ Xp 6= ∅ (we can do so unless at some

point we �nd already that X = T).
Now let xp ∈ Xp. Then since Xp = Xp−1 ∩ (Xp−1 + 1/p) there exist xp−1 ∈ Xp−1 with

xp = xp−1 + 1/p.
We proceed recursively to �nd xi ∈ Xi with xi+1 = xi + 1/p. Thus we have found that all

the numbers

xp −
k

p
k = 0, 1, . . . , p− 1

belong to X. This is a 1/p-dense, and hence ε-dense, set, as required.
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